論文の概要: A novel quantum machine learning classifier to search for new physics
- arxiv url: http://arxiv.org/abs/2410.18847v1
- Date: Thu, 24 Oct 2024 15:27:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 16:42:44.941614
- Title: A novel quantum machine learning classifier to search for new physics
- Title(参考訳): 新しい物理を探索する新しい量子機械学習分類器
- Authors: Ji-Chong Yang, Shuai Zhang, Chong-Xing Yue,
- Abstract要約: NPを探索するための変分量子探索近傍(VQSN)アルゴリズムを提案する。
その結果、VQSNは古典的なk-アネレスト近傍のアルゴリズムよりも優れた効率を示すことが示唆された。
- 参考スコア(独自算出の注目度): 3.5009667752315474
- License:
- Abstract: Due to the success of the Standard Model~(SM), it is reasonable to anticipate that, the signal of new physics~(NP) beyond the SM is small, and future searches for NP and precision tests of the SM will require high luminosity collider experiments. Moreover, as the precision tests of the SM advances, rarer processes with a greater number of final-state particles will require consideration, which will in turn require the analysis of a multitude of observables. As an inherent consequence of the high luminosity, the generation of a large amount of experimental data in a large feature space presents a significant challenge for data processing. In recent years, quantum machine learning has emerged as a promising approach for processing large amounts of complex data on a quantum computer. In this study, we propose a variational quantum searching neighbor~(VQSN) algorithm to search for NP. As an example, we apply the VQSN in the phenomenological study of the gluon quartic gauge couplings~(gQGCs) at the Large Hadron Collider. The results suggest that VQSN demonstrates superior efficiency to a classical counterpart k-nearest neighbor algorithm, even when dealing with classical data.
- Abstract(参考訳): 標準モデル~(SM)の成功により、SMを超える新しい物理学~(NP)の信号は小さく、将来のNP探索とSMの精度試験は高輝度コライダー実験を必要とすると予測することは妥当である。
さらに、SMの精度試験が進むにつれて、より多くの最終状態粒子を持つ希少なプロセスが考慮され、結果として観測可能な物質を多量に分析する必要がある。
高輝度の結果として、大きな特徴空間における大量の実験データの生成は、データ処理において重要な課題となる。
近年、量子コンピュータ上で大量の複雑なデータを処理するための有望なアプローチとして量子機械学習が登場している。
本研究では,NP探索のための変分量子探索近傍〜(VQSN)アルゴリズムを提案する。
例えば、大型ハドロン衝突型加速器におけるグルーオン四面体ゲージカップリング~(gQGCs)の現象論的研究にVQSNを適用した。
その結果,古典的データを扱う場合であっても,VQSN は古典的な k-ネアレスト近傍アルゴリズムよりも優れた効率性を示すことが示唆された。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Long-lived Particles Anomaly Detection with Parametrized Quantum
Circuits [0.0]
パラメタライズド量子回路に基づく異常検出アルゴリズムを提案する。
このアルゴリズムは古典的なコンピュータで訓練され、シミュレーションや実際の量子ハードウェアでテストされている。
論文 参考訳(メタデータ) (2023-12-07T11:50:42Z) - Generative Invertible Quantum Neural Networks [0.0]
Invertible Neural Networks (INNs) は、高度に複雑なデータのシミュレーションと生成のための確立されたツールとなっている。
本稿では、量子可逆ニューラルネットワーク(QINN)のための量子ゲートアルゴリズムを提案し、レプトンに崩壊するZボソンのジェット関連生成のLHCデータに適用する。
ハイブリッドQINNは、複雑なデータの学習と生成において、かなり大きな純粋に古典的な INN の性能と一致することがわかった。
論文 参考訳(メタデータ) (2023-02-24T21:25:07Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Hybrid Quantum-Classical Graph Convolutional Network [7.0132255816377445]
本研究は、HEPデータを学習するためのハイブリッド量子古典グラフ畳み込みネットワーク(QGCNN)を提供する。
提案フレームワークは,パラメータ数の観点から,古典的多層パーセプトロンと畳み込みニューラルネットワークの優位性を示す。
テスト精度に関して、QGCNNは、同じHEPデータセット上の量子畳み込みニューラルネットワークと同等のパフォーマンスを示している。
論文 参考訳(メタデータ) (2021-01-15T16:02:52Z) - Quantum-enhanced data classification with a variational entangled sensor
network [3.1083620257082707]
絡み合ったセンサーネットワーク(SLAEN)によって補助される監視学習は、古典的な機械学習アルゴリズムによって訓練されたVQCを利用する、独立したパラダイムである。
我々の研究は、NISQ時代における量子化データ処理の新たな道のりを開拓している。
論文 参考訳(メタデータ) (2020-06-22T01:22:33Z) - Quantum-inspired Machine Learning on high-energy physics data [0.0]
CERNの大型ハドロン衝突型加速器が生成するデータの分析と分類に量子インスパイアされた機械学習技術を適用した。
特に、いわゆるb-ジェットを効果的に分類する方法、陽子-陽子実験からb-クォークを起源とするジェット、および分類結果の解釈方法について述べる。
論文 参考訳(メタデータ) (2020-04-28T18:00:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。