論文の概要: Grid4D: 4D Decomposed Hash Encoding for High-fidelity Dynamic Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2410.20815v1
- Date: Mon, 28 Oct 2024 08:02:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:22:25.930379
- Title: Grid4D: 4D Decomposed Hash Encoding for High-fidelity Dynamic Gaussian Splatting
- Title(参考訳): Grid4D: 高忠実度動的ガウススプレイティングのための4次元分解ハッシュ符号化
- Authors: Jiawei Xu, Zexin Fan, Jian Yang, Jin Xie,
- Abstract要約: ガウススプラッティングに基づく動的シーンレンダリングモデルであるGrid4Dを提案する。
低ランクの仮定を使わずに, 4Dエンコーディングを1つの空間的および3つの時間的3Dハッシュエンコーディングに分解する。
我々の実験は、Grid4Dが視覚的品質とレンダリング速度において最先端のモデルよりも大幅に優れていることを示した。
- 参考スコア(独自算出の注目度): 21.47981274362659
- License:
- Abstract: Recently, Gaussian splatting has received more and more attention in the field of static scene rendering. Due to the low computational overhead and inherent flexibility of explicit representations, plane-based explicit methods are popular ways to predict deformations for Gaussian-based dynamic scene rendering models. However, plane-based methods rely on the inappropriate low-rank assumption and excessively decompose the space-time 4D encoding, resulting in overmuch feature overlap and unsatisfactory rendering quality. To tackle these problems, we propose Grid4D, a dynamic scene rendering model based on Gaussian splatting and employing a novel explicit encoding method for the 4D input through the hash encoding. Different from plane-based explicit representations, we decompose the 4D encoding into one spatial and three temporal 3D hash encodings without the low-rank assumption. Additionally, we design a novel attention module that generates the attention scores in a directional range to aggregate the spatial and temporal features. The directional attention enables Grid4D to more accurately fit the diverse deformations across distinct scene components based on the spatial encoded features. Moreover, to mitigate the inherent lack of smoothness in explicit representation methods, we introduce a smooth regularization term that keeps our model from the chaos of deformation prediction. Our experiments demonstrate that Grid4D significantly outperforms the state-of-the-art models in visual quality and rendering speed.
- Abstract(参考訳): 近年,静的なシーンレンダリングの分野でガウシアンスプラッティングが注目されている。
明示的表現の計算オーバーヘッドが低く、固有の柔軟性のため、平面的明示的手法はガウス的動的シーンレンダリングモデルの変形を予測する一般的な方法である。
しかし、平面ベースの手法は不適切な低ランクの仮定に頼り、時空の4Dエンコーディングを過度に分解し、過剰な機能の重複と不満足なレンダリング品質をもたらす。
このような問題に対処するために,Grid4Dを提案する。Grid4Dはガウススプラッティングに基づく動的シーンレンダリングモデルであり,ハッシュ符号化による4D入力に対して,新しい明示的な符号化手法を採用している。
平面に基づく明示表現と異なり、4D符号化を低ランクな仮定なしで1つの空間的および3つの時間的3Dハッシュ符号化に分解する。
さらに、空間的特徴と時間的特徴を集約するために、方向範囲で注目スコアを生成する新しいアテンションモジュールを設計する。
方向性の注意により、Grid4Dは、空間的エンコードされた特徴に基づいて、異なるシーンコンポーネント間での多様な変形をより正確に適合させることができる。
さらに、明示的表現法における滑らかさの固有の欠如を軽減するために、変形予測のカオスからモデルを守るスムーズな正規化項を導入する。
我々の実験は、Grid4Dが視覚的品質とレンダリング速度において最先端のモデルよりも大幅に優れていることを示した。
関連論文リスト
- DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation [10.250715657201363]
本稿では,メッシュ表現と幾何スキン技術を組み合わせた新しいフレームワークDreamMesh4Dを紹介し,モノクロビデオから高品質な4Dオブジェクトを生成する。
我々の手法は現代のグラフィックパイプラインと互換性があり、3Dゲームや映画産業におけるその可能性を示している。
論文 参考訳(メタデータ) (2024-10-09T10:41:08Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
3D Gaussian Splatting (3DGS) は、空間的特徴を持つ3次元幾何学とシーンの外観の両方をコンパクトに符号化することができる。
モデルの空間的理解を改善するために,高密度キーポイント記述子を3DGSに蒸留することを提案する。
提案手法はNeRFMatchやPNeRFLocなど,最先端のニューラル・レンダー・ポース(NRP)法を超越した手法である。
論文 参考訳(メタデータ) (2024-09-24T23:18:32Z) - A Refined 3D Gaussian Representation for High-Quality Dynamic Scene Reconstruction [2.022451212187598]
近年,Neural Radiance Fields (NeRF) は3次元の3次元再構成に革命をもたらした。
3D Gaussian Splatting (3D-GS)は、ニューラルネットワークの暗黙の表現から離れ、代わりに、シーンを直接ガウス型の分布を持つ点雲として表現している。
本稿では,高品質な動的シーン再構成のための高精細な3次元ガウス表現を提案する。
実験の結果,提案手法は3D-GSによるメモリ使用量を大幅に削減しつつ,レンダリング品質と高速化の既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-28T07:12:22Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
動作と外観を分離するSC4Dという,効率的でスパース制御されたビデオ・ツー・4Dフレームワークを提案する。
我々の手法は、品質と効率の両面で既存の手法を超越している。
動作を多種多様な4Dエンティティにシームレスに転送する新しいアプリケーションを考案する。
論文 参考訳(メタデータ) (2024-04-04T18:05:18Z) - latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction [48.86083272054711]
latentSplatは3D潜在空間における意味ガウスを予測し、軽量な生成型2Dアーキテクチャで切り落としてデコードする手法である。
latentSplatは、高速でスケーラブルで高解像度なデータでありながら、復元品質と一般化におけるこれまでの成果よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-24T20:48:36Z) - Motion2VecSets: 4D Latent Vector Set Diffusion for Non-rigid Shape Reconstruction and Tracking [52.393359791978035]
Motion2VecSetsは点雲列からの動的表面再構成のための4次元拡散モデルである。
グローバルな潜在符号の代わりに、潜在集合で4Dダイナミクスをパラメータ化する。
時間的コヒーレントな物体追跡のために、変形潜在集合を同期的に認知し、複数のフレーム間で情報を交換する。
論文 参考訳(メタデータ) (2024-01-12T15:05:08Z) - Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle [9.082693946898733]
高速な動的シーン再構成と,マルチビューおよびモノクロビデオからのリアルタイムレンダリングのための新しいポイントベースアプローチを提案する。
学習速度の遅さとレンダリング速度によって妨げられるNeRFベースのアプローチとは対照的に,我々はポイントベース3Dガウススプラッティング(3DGS)の最近の進歩を活用している。
提案手法は,フレームごとの3DGSモデリングと比較して,5倍のトレーニング速度を実現し,大幅な効率向上を実現している。
論文 参考訳(メタデータ) (2023-12-06T11:25:52Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering [103.32717396287751]
本研究では,動的シーンの全体像として4D-GS(Gaussian Splatting)を提案する。
HexPlaneにインスパイアされたニューラルボクセル符号化アルゴリズムは、4Dニューラルボクセルの機能を効率的に構築するために提案されている。
我々の4D-GS法は、高解像度の82 FPSで、3090 GPUで800$times$800の解像度でリアルタイムレンダリングを実現する。
論文 参考訳(メタデータ) (2023-10-12T17:21:41Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
暗黙の神経表現は、動的なシーンの再構築とレンダリングに対する新しいアプローチの道を開いた。
本稿では,3次元ガウシアンを用いてシーンを再構成し,標準空間で学習する,変形可能な3次元ガウシアンスプラッティング法を提案する。
微分ガウシアン化器により、変形可能な3Dガウシアンは高いレンダリング品質だけでなく、リアルタイムレンダリング速度も達成できる。
論文 参考訳(メタデータ) (2023-09-22T16:04:02Z) - LoRD: Local 4D Implicit Representation for High-Fidelity Dynamic Human
Modeling [69.56581851211841]
そこで我々は,LoRDという,動的に衣を着る人間の局所的な4D暗黙表現を提案する。
私たちの重要な洞察は、ネットワークがローカルな部分レベルの表現の潜在コードを学ぶように促すことです。
LoRDは、4D人間を表現する能力が強く、実用上の最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-08-18T03:49:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。