論文の概要: Linearized Wasserstein Barycenters: Synthesis, Analysis, Representational Capacity, and Applications
- arxiv url: http://arxiv.org/abs/2410.23602v1
- Date: Thu, 31 Oct 2024 03:36:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:03:21.966069
- Title: Linearized Wasserstein Barycenters: Synthesis, Analysis, Representational Capacity, and Applications
- Title(参考訳): 線形化ワッサーシュタインバリセンター:合成,解析,表現能力,応用
- Authors: Matthew Werenski, Brendan Mallery, Shuchin Aeron, James M. Murphy,
- Abstract要約: LBCMの確率測度を特徴付ける変分問題に対する閉形式解を提供する。
我々は、$mathbbR2$ における LBCM の自然な類似構造が失敗することを示し、それを1次元以上の適切な拡張を特定するための開問題として残す。
- 参考スコア(独自算出の注目度): 12.915771705517605
- License:
- Abstract: We propose the \textit{linear barycentric coding model (LBCM)} that utilizes the linear optimal transport (LOT) metric for analysis and synthesis of probability measures. We provide a closed-form solution to the variational problem characterizing the probability measures in the LBCM and establish equivalence of the LBCM to the set of Wasserstein-2 barycenters in the special case of compatible measures. Computational methods for synthesizing and analyzing measures in the LBCM are developed with finite sample guarantees. One of our main theoretical contributions is to identify an LBCM, expressed in terms of a simple family, which is sufficient to express all probability measures on the interval $[0,1]$. We show that a natural analogous construction of an LBCM in $\mathbb{R}^2$ fails, and we leave it as an open problem to identify the proper extension in more than one dimension. We conclude by demonstrating the utility of LBCM for covariance estimation and data imputation.
- Abstract(参考訳): 本稿では,線形最適輸送(LOT)メトリックを用いて,確率測度の分析と合成を行う,LBCM(textit{linear barycentric code model)を提案する。
本稿では, LBCM の確率測度を特徴付ける変分問題に対する閉形式解を提案し, 互換性測度の特別な場合において, LBCM と Wasserstein-2 バリセンタの集合との等価性を確立する。
有限サンプル保証を用いて, LBCMにおける測定値の合成と解析のための計算手法を開発した。
我々の主要な理論的貢献の1つは、単純な族で表される LBCM を識別することであり、これは区間$[0,1]$ の確率測度を全て表すのに十分である。
我々は、$\mathbb{R}^2$ の LBCM の自然な類似構成が失敗することを示し、これを開問題として1次元以上の適切な拡張を識別する。
共分散推定とデータ計算におけるLBCMの有用性を示す。
関連論文リスト
- On the Consistency of Maximum Likelihood Estimation of Probabilistic
Principal Component Analysis [1.0528389538549636]
PPCAは科学や工学から定量的ファイナンスまで幅広い分野の応用がある。
様々な分野に適用可能であるにもかかわらず、このモデルに対する最大可能性(ML)解の健全性を正当化する理論的な保証はほとんど存在しない。
商位相空間を用いた新しいアプローチを提案し、特に、最大極大解が適切な商ユークリッド空間において一貫したことを示す。
論文 参考訳(メタデータ) (2023-11-08T22:40:45Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
ブラインドソース分離(BSS)は、変換$f$が可逆であるが未知であるという条件の下で、その混合である$X=f(S)$から観測されていない信号を復元することを目的としている。
このような違反を分析し、その影響を$X$から$S$のブラインドリカバリに与える影響を定量化するための一般的なフレームワークを提案する。
定義された構造的仮定からの偏差に対する一般的なBSS溶出は、明示的な連続性保証という形で、利益的に分析可能であることを示す。
論文 参考訳(メタデータ) (2023-03-17T16:30:51Z) - Measure Estimation in the Barycentric Coding Model [13.621495571281201]
偏心符号モデルの下で測度を推定することは、未知の偏心座標を推定することと同値である。
我々は,BCMに基づく測度推定のための新しい幾何学的,統計的,および計算的洞察を提供する。
論文 参考訳(メタデータ) (2022-01-28T15:51:30Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
ユークリッド空間における測度保存拡散の完全なレシピは、最近、いくつかのMCMCアルゴリズムを単一のフレームワークに統合した。
我々は、この構成を任意の多様体に改善し一般化する幾何学理論を開発する。
論文 参考訳(メタデータ) (2021-05-06T17:36:55Z) - Conditional Density Estimation via Weighted Logistic Regressions [0.30458514384586394]
非均一プロセスモデルの一般密度と可能性関数の関連性を示すパラメトリック条件密度推定法を提案する。
最大推定値は重み付けされたロジスティック回帰によって得ることができ、ブロックワイズ交互化スキームと局所ケースコントロールサンプリングを組み合わせることで計算を著しく緩和することができる。
論文 参考訳(メタデータ) (2020-10-21T11:08:25Z) - Exact and Approximation Algorithms for Sparse PCA [1.7640556247739623]
本稿では,MISDP(MISDP)とMISDP(MISDP)について述べる。
次に、それらの連続緩和値の理論的最適性ギャップを分析し、それらが最先端の値よりも強いことを証明する。
市販の解法は一般にMISDPを解くのが難しいため,MISDPと同等の大きさのMILP(mixed-integer linear program)を用いてSPCAを任意の精度で近似する。
論文 参考訳(メタデータ) (2020-08-28T02:07:08Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Generalized Sliced Distances for Probability Distributions [47.543990188697734]
我々は、一般化スライス確率測定(GSPM)と呼ばれる、幅広い確率測定値の族を紹介する。
GSPMは一般化されたラドン変換に根付いており、ユニークな幾何学的解釈を持つ。
GSPMに基づく勾配流を生成モデル応用に適用し、軽度な仮定の下では、勾配流が大域的最適に収束することを示す。
論文 参考訳(メタデータ) (2020-02-28T04:18:00Z) - Distributed, partially collapsed MCMC for Bayesian Nonparametrics [68.5279360794418]
ディリクレ法やベータ・ベルヌーリ法のようなモデルでよく用いられる完全無作為測度は独立な部分測度に分解可能であるという事実を利用する。
この分解を用いて、潜在測度を、インスタンス化された成分のみを含む有限測度と、他のすべての成分を含む無限測度に分割する。
得られたハイブリッドアルゴリズムは、収束保証を犠牲にすることなくスケーラブルな推論を可能にすることができる。
論文 参考訳(メタデータ) (2020-01-15T23:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。