論文の概要: Kernel Operator-Theoretic Bayesian Filter for Nonlinear Dynamical Systems
- arxiv url: http://arxiv.org/abs/2411.00198v1
- Date: Thu, 31 Oct 2024 20:31:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:55.713603
- Title: Kernel Operator-Theoretic Bayesian Filter for Nonlinear Dynamical Systems
- Title(参考訳): 非線形力学系に対するカーネル演算子理論ベイズフィルタ
- Authors: Kan Li, José C. Príncipe,
- Abstract要約: 本稿では,演算子理論モデリングのための機能的ベイズ的視点に基づく機械学習手法を提案する。
この定式化は、線型作用素の無限次元空間や普遍近似特性を持つヒルベルト空間で直接行われる。
この実践的手法は正確な結果を得ることができ、有限次元クープマン分解より優れることを示す。
- 参考スコア(独自算出の注目度): 25.922732994397485
- License:
- Abstract: Motivated by the surge of interest in Koopman operator theory, we propose a machine-learning alternative based on a functional Bayesian perspective for operator-theoretic modeling of unknown, data-driven, nonlinear dynamical systems. This formulation is directly done in an infinite-dimensional space of linear operators or Hilbert space with universal approximation property. The theory of reproducing kernel Hilbert space (RKHS) allows the lifting of nonlinear dynamics to a potentially infinite-dimensional space via linear embeddings, where a general nonlinear function is represented as a set of linear functions or operators in the functional space. This allows us to apply classical linear Bayesian methods such as the Kalman filter directly in the Hilbert space, yielding nonlinear solutions in the original input space. This kernel perspective on the Koopman operator offers two compelling advantages. First, the Hilbert space can be constructed deterministically, agnostic to the nonlinear dynamics. The Gaussian kernel is universal, approximating uniformly an arbitrary continuous target function over any compact domain. Second, Bayesian filter is an adaptive, linear minimum-variance algorithm, allowing the system to update the Koopman operator and continuously track the changes across an extended period of time, ideally suited for modern data-driven applications such as real-time machine learning using streaming data. In this paper, we present several practical implementations to obtain a finite-dimensional approximation of the functional Bayesian filter (FBF). Due to the rapid decay of the Gaussian kernel, excellent approximation is obtained with a small dimension. We demonstrate that this practical approach can obtain accurate results and outperform finite-dimensional Koopman decomposition.
- Abstract(参考訳): クープマン作用素理論への関心の高まりにより、未知のデータ駆動非線形力学系の作用素-理論モデリングのための機能的ベイズ的視点に基づく機械学習代替案を提案する。
この定式化は、線型作用素の無限次元空間や普遍近似特性を持つヒルベルト空間で直接行われる。
再生核ヒルベルト空間(RKHS)の理論は、一般非線形函数が函数空間内の線型函数の集合として表されるような線型埋め込みを通じて、潜在的無限次元空間への非線形力学の持ち上げを可能にする。
これにより、カルマンフィルタのような古典的線型ベイズ法をヒルベルト空間に直接適用することができ、元の入力空間で非線形解が得られる。
Koopman演算子におけるこのカーネルの観点は、2つの魅力的な利点を提供する。
まず、ヒルベルト空間は決定論的に、非線形力学に非依存に構築することができる。
ガウス核は普遍的であり、任意のコンパクト領域上の任意の連続目標函数を均一に近似する。
第二に、ベイジアンフィルタは適応的で線形な最小分散アルゴリズムであり、システムはKoopman演算子を更新し、変化を長期にわたって継続的に追跡することができる。
本稿では,関数ベイズフィルタ(FBF)の有限次元近似を得るための実用的実装について述べる。
ガウス核の急激な崩壊により、小さな次元で優れた近似が得られる。
この実践的手法は正確な結果を得ることができ、有限次元クープマン分解より優れることを示す。
関連論文リスト
- Highly Adaptive Ridge [84.38107748875144]
直交可積分な部分微分を持つ右連続函数のクラスにおいて,$n-2/3$自由次元L2収束率を達成する回帰法を提案する。
Harは、飽和ゼロオーダーテンソル積スプライン基底展開に基づいて、特定のデータ適応型カーネルで正確にカーネルリッジレグレッションを行う。
我々は、特に小さなデータセットに対する最先端アルゴリズムよりも経験的性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-10-03T17:06:06Z) - Uncertainty Modelling and Robust Observer Synthesis using the Koopman Operator [5.317624228510749]
クープマン作用素は非線形系を無限次元線型系として書き換えることを可能にする。
クープマン作用素の有限次元近似は、データから直接同定することができる。
提案手法を実験的に実証するために、数十台のモータードライブの人口を用いている。
論文 参考訳(メタデータ) (2024-10-01T20:31:18Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Minimax Optimal Kernel Operator Learning via Multilevel Training [11.36492861074981]
2つの無限次元ソボレフ再生核ヒルベルト空間間のヒルベルト・シュミット作用素の学習の統計的極限について検討する。
無限次元関数空間間の線形作用素を学習する際に最適なマルチレベルカーネル演算子学習アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-09-28T21:31:43Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
線形汎関数に対するバイアス認識設計のためのアルゴリズムを提供する。
準ガウス雑音下での固定および適応設計に対する漸近的でない信頼集合を導出する。
論文 参考訳(メタデータ) (2022-05-26T20:56:25Z) - Adjoint-aided inference of Gaussian process driven differential
equations [0.8257490175399691]
本稿では,線形系の随伴性を用いて,GPとしてモデル化された強制関数を効率的に推論する方法を示す。
常微分方程式と偏微分方程式の両方の系に対するアプローチを実証する。
論文 参考訳(メタデータ) (2022-02-09T17:35:14Z) - Learning the Koopman Eigendecomposition: A Diffeomorphic Approach [7.309026600178573]
コープマン固有関数を用いた安定非線形系の線形表現を学習するための新しいデータ駆動手法を提案する。
我々の知る限りでは、これは演算子、システム、学習理論の間のギャップを埋める最初の試みである。
論文 参考訳(メタデータ) (2021-10-15T00:47:21Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
Koopman演算子は非線形系の線形記述を可能にする数学的ツールである。
本稿では,その核となる部分を同一フレームワークのデュアルバージョンとして捉え,それらをカーネルフレームワークに組み込む。
カーネルメソッドとKoopman演算子との強力なリンクを確立し、Kernel関数を通じて後者を推定する。
論文 参考訳(メタデータ) (2021-03-25T11:08:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。