論文の概要: Learning the Koopman Eigendecomposition: A Diffeomorphic Approach
- arxiv url: http://arxiv.org/abs/2110.07786v1
- Date: Fri, 15 Oct 2021 00:47:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-18 15:17:00.880725
- Title: Learning the Koopman Eigendecomposition: A Diffeomorphic Approach
- Title(参考訳): クープマン固有分解の学習:微分型アプローチ
- Authors: Petar Bevanda, Johannes Kirmayr, Stefan Sosnowski, Sandra Hirche
- Abstract要約: コープマン固有関数を用いた安定非線形系の線形表現を学習するための新しいデータ駆動手法を提案する。
我々の知る限りでは、これは演算子、システム、学習理論の間のギャップを埋める最初の試みである。
- 参考スコア(独自算出の注目度): 7.309026600178573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel data-driven approach for learning linear representations
of a class of stable nonlinear systems using Koopman eigenfunctions. By
learning the conjugacy map between a nonlinear system and its Jacobian
linearization through a Normalizing Flow one can guarantee the learned function
is a diffeomorphism. Using this diffeomorphism, we construct eigenfunctions of
the nonlinear system via the spectral equivalence of conjugate systems -
allowing the construction of linear predictors for nonlinear systems. The
universality of the diffeomorphism learner leads to the universal approximation
of the nonlinear system's Koopman eigenfunctions. The developed method is also
safe as it guarantees the model is asymptotically stable regardless of the
representation accuracy. To our best knowledge, this is the first work to close
the gap between the operator, system and learning theories. The efficacy of our
approach is shown through simulation examples.
- Abstract(参考訳): コープマン固有関数を用いた安定非線形系の線形表現を学習するための新しいデータ駆動手法を提案する。
非線形系とそのジャコビアン線型化の間の共役写像を正規化フローを通して学習することで、学習関数が微分同相であることを保証することができる。
この微分同型を用いて、非線形系に対する線形予測器の構築を許容する共役系のスペクトル同値性を通して非線形系の固有関数を構築する。
微分同相学習者の普遍性は、非線形システムのクープマン固有関数の普遍近似に繋がる。
また,表現精度によらずモデルが漸近安定であることを保証するため,本手法は安全である。
我々の知る限りでは、これは演算子、システム、学習理論の間のギャップを埋める最初の試みである。
本手法の有効性をシミュレーション例で示す。
関連論文リスト
- Kernel Operator-Theoretic Bayesian Filter for Nonlinear Dynamical Systems [25.922732994397485]
本稿では,演算子理論モデリングのための機能的ベイズ的視点に基づく機械学習手法を提案する。
この定式化は、線型作用素の無限次元空間や普遍近似特性を持つヒルベルト空間で直接行われる。
この実践的手法は正確な結果を得ることができ、有限次元クープマン分解より優れることを示す。
論文 参考訳(メタデータ) (2024-10-31T20:31:31Z) - Koopman-based Deep Learning for Nonlinear System Estimation [1.3791394805787949]
複素非線形系の有意な有限次元表現を抽出するために、クープマン作用素理論に基づく新しいデータ駆動線形推定器を提案する。
我々の推定器は推定された非線形系の微分同相変換にも適応しており、再学習せずに最適な状態推定を計算できる。
論文 参考訳(メタデータ) (2024-05-01T16:49:54Z) - Deep Learning for Structure-Preserving Universal Stable Koopman-Inspired
Embeddings for Nonlinear Canonical Hamiltonian Dynamics [9.599029891108229]
シンプレクティック変換による正準非線形ハミルトン系に対する大域的線形化埋め込みの同定に着目する。
連続スペクトルを持つ系に対するクープマン作用素の欠点を克服するため、持ち上げ原理を適用し、大域的な立方体埋め込みを学習する。
我々は、コンパクトなシンプレクティック座標変換とそれに対応する単純な力学モデルを取得するためのディープラーニングの能力を実証する。
論文 参考訳(メタデータ) (2023-08-26T09:58:09Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Sigmoid、ReLU、Tanhなどの非線形活性化関数は、ニューラルネットワーク(NN)において大きな成功を収めた。
サンプルの複雑な非線形特性のため、これらの活性化関数の目的は、元の特徴空間から線形分離可能な特徴空間へサンプルを投影することである。
この現象は、現在の典型的なNNにおいて、すべての特徴がすべての非線形関数によって変換される必要があるかどうかを探求することに興味をそそる。
論文 参考訳(メタデータ) (2022-03-22T13:09:17Z) - KoopmanizingFlows: Diffeomorphically Learning Stable Koopman Operators [7.447933533434023]
本稿では,線形時間不変(LTI)モデルを構築するための新しいフレームワークを提案する。
事前に定義された関数のライブラリやスペクトルを知ることなく、クープマン作用素の特徴を学習する。
本稿では,LASA手書きデータセットにおける最先端手法と比較して,提案手法の優れた有効性を示す。
論文 参考訳(メタデータ) (2021-12-08T02:40:40Z) - Learning Stable Koopman Embeddings [9.239657838690228]
本稿では,非線形システムの安定モデル学習のための新しいデータ駆動手法を提案する。
離散時間非線形契約モデルはすべて、我々のフレームワークで学習できることを実証する。
論文 参考訳(メタデータ) (2021-10-13T05:44:13Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
Koopman演算子は非線形系の線形記述を可能にする数学的ツールである。
本稿では,その核となる部分を同一フレームワークのデュアルバージョンとして捉え,それらをカーネルフレームワークに組み込む。
カーネルメソッドとKoopman演算子との強力なリンクを確立し、Kernel関数を通じて後者を推定する。
論文 参考訳(メタデータ) (2021-03-25T11:08:26Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
同じ良い線形モデルから非負関数に対する最初のモデルを提供する。
我々は、それが表現定理を認め、凸問題に対する効率的な二重定式化を提供することを証明した。
論文 参考訳(メタデータ) (2020-07-08T07:17:28Z) - Learning Bijective Feature Maps for Linear ICA [73.85904548374575]
画像データに適した既存の確率的深層生成モデル (DGM) は, 非線形ICAタスクでは不十分であることを示す。
そこで本研究では,2次元特徴写像と線形ICAモデルを組み合わせることで,高次元データに対する解釈可能な潜在構造を学習するDGMを提案する。
画像上のフローベースモデルや線形ICA、変分オートエンコーダよりも、高速に収束し、訓練が容易なモデルを作成し、教師なしの潜在因子発見を実現する。
論文 参考訳(メタデータ) (2020-02-18T17:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。