論文の概要: Metric properties of partial and robust Gromov-Wasserstein distances
- arxiv url: http://arxiv.org/abs/2411.02198v1
- Date: Mon, 04 Nov 2024 15:53:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:27:21.436119
- Title: Metric properties of partial and robust Gromov-Wasserstein distances
- Title(参考訳): 部分的およびロバストなGromov-Wasserstein距離の計量的性質
- Authors: Jannatul Chhoa, Michael Ivanitskiy, Fushuai Jiang, Shiying Li, Daniel McBride, Tom Needham, Kaiying O'Hare,
- Abstract要約: グロモフ=ワッサーシュタイン距離(Gromov-Wasserstein distance, GW)は、最適な輸送のアイデアに基づいて、メトリクスの族を定義する。
GW距離は本質的に外れ音に敏感であり、部分的マッチングに対応できない。
我々の新しい距離は真の測度を定義し、それらがGW距離と同じ位相を誘導し、摂動にさらなる堅牢性をもたらすことを示す。
- 参考スコア(独自算出の注目度): 3.9485589956945204
- License:
- Abstract: The Gromov-Wasserstein (GW) distances define a family of metrics, based on ideas from optimal transport, which enable comparisons between probability measures defined on distinct metric spaces. They are particularly useful in areas such as network analysis and geometry processing, as computation of a GW distance involves solving for registration between the objects which minimizes geometric distortion. Although GW distances have proven useful for various applications in the recent machine learning literature, it has been observed that they are inherently sensitive to outlier noise and cannot accommodate partial matching. This has been addressed by various constructions building on the GW framework; in this article, we focus specifically on a natural relaxation of the GW optimization problem, introduced by Chapel et al., which is aimed at addressing exactly these shortcomings. Our goal is to understand the theoretical properties of this relaxed optimization problem, from the viewpoint of metric geometry. While the relaxed problem fails to induce a metric, we derive precise characterizations of how it fails the axioms of non-degeneracy and triangle inequality. These observations lead us to define a novel family of distances, whose construction is inspired by the Prokhorov and Ky Fan distances, as well as by the recent work of Raghvendra et al.\ on robust versions of classical Wasserstein distance. We show that our new distances define true metrics, that they induce the same topology as the GW distances, and that they enjoy additional robustness to perturbations. These results provide a mathematically rigorous basis for using our robust partial GW distances in applications where outliers and partial matching are concerns.
- Abstract(参考訳): グロモフ=ワッサーシュタイン距離(Gromov-Wasserstein distances, GW)は、異なる距離空間上で定義された確率測度の比較を可能にする最適輸送の概念に基づいて、メトリクスの族を定義する。
ネットワーク解析や幾何処理などの分野では特に有用であり、GW距離の計算は幾何歪みを最小限に抑える物体間の登録を解く。
GW距離は、近年の機械学習文学において様々な用途に有用であることが証明されているが、それらは本質的に外れ音に敏感であり、部分的マッチングを許容できないことが観察されている。
本稿では,これらの欠点を正確に解決することを目的としたChapelらによって導入されたGW最適化問題の自然緩和に焦点を当てる。
我々の目標は、この緩和された最適化問題の理論的性質を計量幾何学の観点から理解することである。
緩和された問題は計量を導き出すのに失敗するが、非退化と三角形の不等式の公理をいかに失敗させるかという正確な特徴を導出する。
これらの観察により、プロホロフとカイファンの距離に触発された新しい距離の族を定義することができ、また古典的なワッサーシュタイン距離の頑健なバージョンに関するラグヴェンドラらによる最近の研究によってもたらされる。
我々の新しい距離は真の測度を定義し、それらがGW距離と同じ位相を誘導し、摂動にさらなる堅牢性をもたらすことを示す。
これらの結果は、外れ値と部分マッチングが問題となるアプリケーションにおいて、ロバストな部分GW距離を使用するための数学的に厳密な基礎を提供する。
関連論文リスト
- Disentangled Representation Learning with the Gromov-Monge Gap [65.73194652234848]
乱れのないデータから歪んだ表現を学習することは、機械学習における根本的な課題である。
本稿では,2次最適輸送に基づく非交叉表現学習手法を提案する。
提案手法の有効性を4つの標準ベンチマークで示す。
論文 参考訳(メタデータ) (2024-07-10T16:51:32Z) - Partial Gromov-Wasserstein Metric [8.503892585556901]
近年、Gromov-Wasserstein(GW)距離は機械学習コミュニティへの関心が高まっている。
我々は、部分グロモフ・ワッサーシュタイン(PGW)と呼ばれるUGW問題の特定の事例を提案する。
論文 参考訳(メタデータ) (2024-02-06T03:36:05Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - Outlier-Robust Gromov-Wasserstein for Graph Data [31.895380224961464]
我々は、Gromov-Wasserstein (GW) 距離のRGWと呼ばれる新しい頑健なバージョンを導入する。
RGWは、クルバック・リーバーの発散に基づくあいまいさ集合の中で楽観的に摂動する限界制約を特徴とする。
サブグラフマッチングや部分形状対応などの実世界のグラフ学習におけるRGWの有効性を示す。
論文 参考訳(メタデータ) (2023-02-09T12:57:29Z) - Markovian Sliced Wasserstein Distances: Beyond Independent Projections [51.80527230603978]
我々は、射影方向にマルコフ構造を課す新しいSW距離の族、Markovian sliced Wasserstein (MSW) 距離を導入する。
フロー,色移動,深部生成モデルなどの様々な応用において,従来のSW変種との距離を比較し,MSWの良好な性能を示す。
論文 参考訳(メタデータ) (2023-01-10T01:58:15Z) - Quantized Gromov-Wasserstein [10.592277756185046]
Quantized Gromov Wasserstein(qGW)は、部品を基本的なオブジェクトとして扱い、問題の理論上の上限の階層に収まるメトリクスです。
最適なgwマッチングを近似するアルゴリズムを開発し,アルゴリズムによる高速化とメモリ複雑性の低減を実現する。
我々は、最先端の状況を超えて、既存の文献よりも桁違いに大きいスケールでGWマッチングを適用することができる。
論文 参考訳(メタデータ) (2021-04-05T17:03:20Z) - The Unbalanced Gromov Wasserstein Distance: Conic Formulation and
Relaxation [0.0]
距離測度空間(すなわち確率分布を持つ距離空間)を比較することは、多くの機械学習問題の中心である。
そのような距離空間の間の最も一般的な距離は計量測度Gro-Wasserstein (GW) 距離であり、その距離は二次である。
GW の定式化は、任意の正測度を持つ距離空間の比較を等距離まで緩和する。
論文 参考訳(メタデータ) (2020-09-09T12:38:14Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
射影ロバスト(PR)OTは、2つの測度の間のOTコストを最大化するために、射影可能な$k$次元部分空間を選択する。
私たちの最初の貢献は、PRワッサーシュタイン距離のいくつかの基本的な統計的性質を確立することである。
次に、部分空間を最適化するのではなく平均化することにより、PRW距離の代替として積分PRワッサーシュタイン距離(IPRW)を提案する。
論文 参考訳(メタデータ) (2020-06-22T14:35:33Z) - Theoretical Guarantees for Bridging Metric Measure Embedding and Optimal
Transport [18.61019008000831]
共役ユークリッド空間に計量測度空間を埋め込み、埋め込み分布上の最適輸送(OT)を計算する方法を考える。
このことは、ロバストなワッサーシュタイン距離(SERW)を埋め込む部分埋め込み(sub-embedding robust Wasserstein)と呼ばれるものにつながります。
論文 参考訳(メタデータ) (2020-02-19T17:52:01Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
本稿では, アンカー・エナジー (AE) とアンカー・ワッサースタイン (AW) 距離を紹介する。
我々の主な貢献は、素案実装が立方体となる対数四重項時間でAEを正確に計算するスイープラインアルゴリズムを提案することである。
AE と AW は,一般的な GW 近似の計算コストのごく一部において,様々な実験環境において良好に動作することを示す。
論文 参考訳(メタデータ) (2020-02-05T03:09:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。