Toward end-to-end quantum simulation for protein dynamics
- URL: http://arxiv.org/abs/2411.03972v1
- Date: Wed, 06 Nov 2024 15:10:15 GMT
- Title: Toward end-to-end quantum simulation for protein dynamics
- Authors: Zhenning Liu, Xiantao Li, Chunhao Wang, Jin-Peng Liu,
- Abstract summary: We systematically investigate end-to-end quantum algorithms for various protein dynamics with effects, such as mechanical forces or noises.
For the read-in setting, we design (i) efficient quantum algorithms for initial state preparation, utilizing counter-based random number generator and rejection sampling.
For the read-out setting, our algorithms estimate various classical observables, such as energy, low vibration modes, density of states, correlation of displacement, and optimal control of molecular dynamics.
- Score: 5.65693337062667
- License:
- Abstract: Modeling and simulating the protein folding process overall remains a grand challenge in computational biology. We systematically investigate end-to-end quantum algorithms for simulating various protein dynamics with effects, such as mechanical forces or stochastic noises. We offer efficient quantum simulation algorithms to produce quantum encoding of the final states, history states, or density matrices of inhomogeneous or stochastic harmonic oscillator models. For the read-in setting, we design (i) efficient quantum algorithms for initial state preparation, utilizing counter-based random number generator and rejection sampling, and (ii) depth-efficient approaches for molecular structure loading. Both are particularly important in handling large protein molecules. For the read-out setting, our algorithms estimate various classical observables, such as energy, low vibration modes, density of states, correlation of displacement, and optimal control of molecular dynamics. We also show classical numerical experiments focused on estimating the density of states and applying the optimal control to facilitate conformation changes to verify our arguments on potential quantum speedups. Overall, our study demonstrates that the quantum simulation of protein dynamics can be a solid end-to-end application in the era of early or fully fault-tolerant quantum computing.
Related papers
- Demonstration of a variational quantum eigensolver with a solid-state spin system under ambient conditions [15.044543674753308]
Quantum simulators offer the potential to utilize the quantum nature of a physical system to study another physical system.
The variational-quantum-eigensolver algorithm is a particularly promising application for investigating molecular electronic structures.
Spin-based solid-state qubits have the advantage of long decoherence time and high-fidelity quantum gates.
arXiv Detail & Related papers (2024-07-23T09:17:06Z) - Low-Rank Variational Quantum Algorithm for the Dynamics of Open Quantum
Systems [0.5755004576310334]
A variational quantum algorithm is developed to simulate the real-time evolution of the density matrix governed by the Lindblad master equation.
The algorithm encodes each pure state of the statistical mixture as a parametrized quantum circuit.
Two variational Ans"atze are proposed, and their effectiveness is assessed in the simulation of the dynamics of a 2D dissipative transverse field Ising model.
arXiv Detail & Related papers (2024-03-09T13:23:14Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
We introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher-order multi-product formulas on the other.
Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification.
Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth.
arXiv Detail & Related papers (2021-01-19T19:00:23Z) - Microcanonical and finite temperature ab initio molecular dynamics
simulations on quantum computers [0.0]
Ab initio molecular dynamics (AIMD) is a powerful tool to predict properties of molecular and condensed matter systems.
We provide solutions for the alleviation of the statistical noise associated to the measurements of the expectation values of energies and forces.
We also propose a Langevin dynamics algorithm for the simulation of canonical, i.e., constant temperature, dynamics.
arXiv Detail & Related papers (2020-08-18T20:24:27Z) - Digital quantum simulation of molecular dynamics and control [0.0]
We study how quantum computers could be employed to design optimally-shaped fields to control molecular systems.
We introduce a hybrid algorithm that utilizes a quantum computer for simulating the field-induced quantum dynamics of a molecular system in time.
Numerical illustrations are then presented that explicitly treat paradigmatic vibrational and rotational control problems.
arXiv Detail & Related papers (2020-02-28T00:45:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.