RoundTable: Investigating Group Decision-Making Mechanism in Multi-Agent Collaboration
- URL: http://arxiv.org/abs/2411.07161v2
- Date: Tue, 03 Jun 2025 22:35:00 GMT
- Title: RoundTable: Investigating Group Decision-Making Mechanism in Multi-Agent Collaboration
- Authors: Young-Min Cho, Raphael Shu, Nilaksh Das, Tamer Alkhouli, Yi-An Lai, Jason Cai, Monica Sunkara, Yi Zhang, Dan Roth,
- Abstract summary: We analyze how different voting rules affect decision quality and efficiency in a multi-round collaboration.<n>At the extreme, unanimous voting gives 87% lower initial performance than the best-performing method.<n>Our findings highlight the crucial role of group decision-making in optimizing MAS collaboration.
- Score: 49.4875652673051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective group decision-making is critical in Multi-Agent Systems (MAS). Yet, how different mechanisms for reaching consensus impact collaboration quality and efficiency remains understudied. We conduct a systematic study on group decision-making mechanisms in a decentralized setting. Through controlled experiments, we analyze how different voting rules affect decision quality and efficiency in a multi-round collaboration. Results reveal that majority voting often cause inefficient collaboration due to its strict acceptance criteria. At the extreme, unanimous voting gives 87% lower initial performance than the best-performing method. Our qualitative analysis of cross-agent communication shows that messages become longer and more repetitive over time: while message length increases by 84%, similarity to the previous round increases to 90%. Based on these insights, language-based early stopping methods make the performance 13% closer to oracle while reducing rounds by 50%. Our findings highlight the crucial role of group decision-making in optimizing MAS collaboration.
Related papers
- GEMMAS: Graph-based Evaluation Metrics for Multi Agent Systems [1.7825757481227436]
We introduce GEMMAS, a graph-based evaluation framework that analyzes the internal collaboration process by modeling agent interactions as a directed acyclic graph.<n>To capture collaboration quality, we propose two process-level metrics: Information Diversity Score (IDS) to measure semantic variation in inter-agent messages, and Unnecessary Path Ratio (UPR) to quantify redundant reasoning paths.<n>We evaluate GEMMAS across five benchmarks and highlight results on GSM8K, where systems with only a 2.1% difference in accuracy differ by 12.8% in IDS and 80% in UPR, revealing substantial variation in internal collaboration.
arXiv Detail & Related papers (2025-07-17T14:59:20Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.
Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.
We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - Voting or Consensus? Decision-Making in Multi-Agent Debate [6.655615220908708]
It has been largely unknown how decision-making influences different tasks.<n>Voting protocols improve performance by 13.2% in reasoning tasks and consensus protocols by 2.8% in knowledge tasks.<n>To improve decision-making by increasing answer diversity, we propose two new methods.
arXiv Detail & Related papers (2025-02-26T13:39:18Z) - Crowd Comparative Reasoning: Unlocking Comprehensive Evaluations for LLM-as-a-Judge [90.8674158031845]
We propose Crowd-based Comparative Evaluation, which introduces additional crowd responses to compare with the candidate responses.<n>This process effectively guides LLM-as-a-Judge to provide a more detailed chain-of-thought (CoT) judgment.<n>Our method produces higher-quality CoTs that facilitate judge distillation and exhibit superior performance in rejection sampling.
arXiv Detail & Related papers (2025-02-18T03:31:06Z) - Hierarchical Reinforcement Learning for Optimal Agent Grouping in Cooperative Systems [0.4759142872591625]
This paper presents a hierarchical reinforcement learning (RL) approach to address the agent grouping or pairing problem in cooperative multi-agent systems.
By employing a hierarchical RL framework, we distinguish between high-level decisions of grouping and low-level agents' actions.
We incorporate permutation-in neural networks to handle the homogeneity and cooperation among agents, enabling effective coordination.
arXiv Detail & Related papers (2025-01-11T14:22:10Z) - Tacit Learning with Adaptive Information Selection for Cooperative Multi-Agent Reinforcement Learning [13.918498667158119]
We introduce a novel cooperative MARL framework based on information selection and tacit learning.
We integrate gating and selection mechanisms, allowing agents to adaptively filter information based on environmental changes.
Experiments on popular MARL benchmarks show that our framework can be seamlessly integrated with state-of-the-art algorithms.
arXiv Detail & Related papers (2024-12-20T07:55:59Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - AgentsCoMerge: Large Language Model Empowered Collaborative Decision Making for Ramp Merging [46.69777653051523]
Ramp merging is one of the bottlenecks in traffic systems, which commonly cause traffic congestion, accidents, and severe carbon emissions.
We propose a novel collaborative decision-making framework, named AgentsCoMerge, to leverage large language models (LLMs)
arXiv Detail & Related papers (2024-08-07T08:34:48Z) - Improving Multi-Agent Debate with Sparse Communication Topology [9.041025703879905]
Multi-agent debate has proven effective in improving large language models quality for reasoning and factuality tasks.
In this paper, we investigate the effect of communication connectivity in multi-agent systems.
Our experiments on GPT and Mistral models reveal that multi-agent debates leveraging sparse communication topology can achieve comparable or superior performance.
arXiv Detail & Related papers (2024-06-17T17:33:09Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - ROMA-iQSS: An Objective Alignment Approach via State-Based Value Learning and ROund-Robin Multi-Agent Scheduling [44.276285521929424]
We introduce a decentralized state-based value learning algorithm that enables agents to independently discover optimal states.
Our theoretical analysis shows that our approach leads decentralized agents to an optimal collective policy.
Empirical experiments further demonstrate that our method outperforms existing decentralized state-based and action-based value learning strategies.
arXiv Detail & Related papers (2024-04-05T09:39:47Z) - Average-Case Analysis of Iterative Voting [28.517198676532963]
Iterative voting is a natural model of repeated strategic decision-making in social choice theory.<n>This work extends average-case analysis comprehensively across three alternatives.
arXiv Detail & Related papers (2024-02-13T00:46:46Z) - The effect of diversity on group decision-making [11.079483551335597]
We show that small groups can, through dialogue, overcome intuitive biases and improve individual decision-making.
Across a large sample and different operationalisations, we consistently find that greater cognitive diversity is associated with more successful group deliberation.
arXiv Detail & Related papers (2024-02-02T14:15:01Z) - Online Decision Mediation [72.80902932543474]
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior.
In clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances.
arXiv Detail & Related papers (2023-10-28T05:59:43Z) - ChoiceMates: Supporting Unfamiliar Online Decision-Making with
Multi-Agent Conversational Interactions [58.71970923420007]
We present ChoiceMates, a system that enables conversations with a dynamic set of LLM-powered agents.
Agents, as opinionated personas, flexibly join the conversation, not only providing responses but also conversing among themselves to elicit each agent's preferences.
Our study (n=36) comparing ChoiceMates to conventional web search and single-agent showed that ChoiceMates was more helpful in discovering, diving deeper, and managing information compared to Web with higher confidence.
arXiv Detail & Related papers (2023-10-02T16:49:39Z) - ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs [61.07130026622437]
Large Language Models (LLMs) still struggle with natural language reasoning tasks.
Motivated by the society of minds, we propose ReConcile.
A multi-model multi-agent framework designed as a round table conference among diverse LLM agents.
arXiv Detail & Related papers (2023-09-22T17:12:45Z) - Rational Decision-Making Agent with Internalized Utility Judgment [88.01612847081677]
Large language models (LLMs) have demonstrated remarkable advancements and have attracted significant efforts to develop LLMs into agents capable of executing intricate multi-step decision-making tasks beyond traditional NLP applications.<n>This paper proposes RadAgent, which fosters the development of its rationality through an iterative framework involving Experience Exploration and Utility Learning.<n> Experimental results on the ToolBench dataset demonstrate RadAgent's superiority over baselines, achieving over 10% improvement in Pass Rate on diverse tasks.
arXiv Detail & Related papers (2023-08-24T03:11:45Z) - Research on Multi-Agent Communication and Collaborative Decision-Making
Based on Deep Reinforcement Learning [0.0]
This thesis studies the cooperative decision-making of multi-agent based on the Multi-Agent Proximal Policy Optimization algorithm.
Different agents can alleviate the non-stationarity caused by local observations through information exchange between agents.
The experimental results show that the improvement has achieved certain effects, which can better alleviate the non-stationarity of the multi-agent environment.
arXiv Detail & Related papers (2023-05-23T14:20:14Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Feature and Instance Joint Selection: A Reinforcement Learning
Perspective [47.704739699011995]
We propose a reinforcement learning solution to accomplish the joint selection task.
In particular, a sequential-scanning mechanism is designed as action strategy of agents.
Experiments on real-world datasets have demonstrated improved performances.
arXiv Detail & Related papers (2022-05-12T07:51:32Z) - Iterated Reasoning with Mutual Information in Cooperative and Byzantine
Decentralized Teaming [0.0]
We show that reformulating an agent's policy to be conditional on the policies of its teammates inherently maximizes Mutual Information (MI) lower-bound when optimizing under Policy Gradient (PG)
Our approach, InfoPG, outperforms baselines in learning emergent collaborative behaviors and sets the state-of-the-art in decentralized cooperative MARL tasks.
arXiv Detail & Related papers (2022-01-20T22:54:32Z) - Promoting Resilience in Multi-Agent Reinforcement Learning via
Confusion-Based Communication [5.367993194110255]
We highlight the relationship between a group's ability to collaborate effectively and the group's resilience.
To promote resilience, we suggest facilitating collaboration via a novel confusion-based communication protocol.
We present empirical evaluation of our approach in a variety of MARL settings.
arXiv Detail & Related papers (2021-11-12T09:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.