論文の概要: Conditional Variable Flow Matching: Transforming Conditional Densities with Amortized Conditional Optimal Transport
- arxiv url: http://arxiv.org/abs/2411.08314v2
- Date: Tue, 26 Nov 2024 14:34:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:31:37.800030
- Title: Conditional Variable Flow Matching: Transforming Conditional Densities with Amortized Conditional Optimal Transport
- Title(参考訳): 条件変数フローマッチング:補正条件最適輸送による条件密度の変換
- Authors: Adam P. Generale, Andreas E. Robertson, Surya R. Kalidindi,
- Abstract要約: 本研究では,連続条件変数間のアモート化を伴う条件分布の変換を学習するフレームワークである条件変数フローマッチングを提案する。
CVFMは、離散的かつ連続的な条件付きマッピングベンチマーク、画像から画像へのドメイン転送、製造過程における材料内部構造の時間的進化をモデル化するなど、ますます困難な問題群で実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Forecasting stochastic nonlinear dynamical systems under the influence of conditioning variables is a fundamental challenge repeatedly encountered across the biological and physical sciences. While flow-based models can impressively predict the temporal evolution of probability distributions representing possible outcomes of a specific process, existing frameworks cannot satisfactorily account for the impact of conditioning variables on these dynamics. Amongst several limitations, existing methods require training data with paired conditions and are developed for discrete conditioning variables. We propose Conditional Variable Flow Matching (CVFM), a framework for learning flows transforming conditional distributions with amortization across continuous conditioning variables - permitting predictions across the conditional density manifold. This is accomplished through several novel advances. In particular, simultaneous sample conditioned flows over the main and conditioning variables. In addition, motivated by theoretical analysis, a conditional Wasserstein distance combined with a loss reweighting kernel facilitating conditional optimal transport. Collectively, these advances allow for learning system dynamics provided measurement data whose states and conditioning variables are not in correspondence. We demonstrate CVFM on a suite of increasingly challenging problems, including discrete and continuous conditional mapping benchmarks, image-to-image domain transfer, and modeling the temporal evolution of materials internal structure during manufacturing processes. We observe that CVFM results in improved performance and convergence characteristics over alternative conditional variants.
- Abstract(参考訳): 条件変数の影響下で確率的非線形力学系を予測することは、生物科学と物理科学の間で何度も遭遇する根本的な課題である。
フローベースモデルは、特定のプロセスの結果を示す確率分布の時間的進化を著しく予測できるが、既存のフレームワークは、これらのダイナミクスに対する条件変数の影響を十分に考慮できない。
いくつかの制約の中で、既存の手法はペア条件のトレーニングデータを必要とし、離散条件変数のために開発されている。
本研究では, 条件密度多様体上での予測を許容し, 連続条件変数間の償却を伴う条件分布の変換を学習するフレームワークである条件変数フローマッチング(CVFM)を提案する。
これはいくつかの新しい進歩によって達成される。
特に、サンプル条件付き同時フローはメイン変数とコンディショニング変数にまたがる。
さらに、理論解析によって動機づけられた条件付きワッサースタイン距離と損失再重み付けカーネルが組み合わされ、条件付き最適輸送が容易になった。
これらの進歩は、状態と条件変数が対応していない測定データを提供するシステム力学の学習を可能にする。
CVFMは、離散的かつ連続的な条件付きマッピングベンチマーク、画像から画像へのドメイン転送、製造過程における材料内部構造の時間的進化をモデル化するなど、ますます困難な問題群で実証する。
CVFMにより,代替条件の変種よりも性能と収束特性が向上することが観察された。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
本稿では,ビデオ中の時間非依存要因と時間変化要因を分離することに着目し,逐次的データ内での自己教師付き不整合表現学習について検討する。
本稿では,静的/動的変数間の因果関係を明示的に考慮し,それらの因子間の通常の独立性仮定を破る新しいモデルを提案する。
実験により、提案手法は、シーンのダイナミックスが内容に影響されるシナリオにおいて、従来の複雑な最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-10T17:04:39Z) - FUSE: Fast Unified Simulation and Estimation for PDEs [11.991297011923004]
同じフレームワーク内で両方の問題を解決することは、正確性と堅牢性において一貫した利益をもたらす可能性がある、と私たちは主張する。
本研究は,本手法の全身血行動態シミュレーションにおける連続的および離散的バイオマーカーの予測能力について述べる。
論文 参考訳(メタデータ) (2024-05-23T13:37:26Z) - Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation [11.874729463016227]
付加雑音によって汚染された物理モデルの代理モデルを構築するための条件付き擬似可逆正規化フローを導入する。
トレーニングプロセスは、ノイズと関数に関する事前知識を必要とせずに、入出力ペアからなるデータセットを利用する。
トレーニングされたモデルでは,高い確率領域をトレーニングセットでカバーした条件付き確率密度関数からサンプルを生成することができる。
論文 参考訳(メタデータ) (2024-03-31T00:09:58Z) - Extended Flow Matching: a Method of Conditional Generation with Generalized Continuity Equation [19.71452214879951]
条件生成は 生成モデルの最も重要な応用の1つです
行列場を通して条件生成に帰納バイアスを導入することができることを示す。
条件生成におけるEMFの競争性を支持する実験結果とともに,本理論を提示する。
論文 参考訳(メタデータ) (2024-02-29T04:12:32Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Benchmarking Autoregressive Conditional Diffusion Models for Turbulent
Flow Simulation [29.806100463356906]
条件付き拡散モデルに基づく自動回帰ロールアウトを利用した完全データ駆動型流体解法が有効な選択肢であるかどうかを解析する。
本研究は, トレーニング体制を超えた流れパラメータの一般化を必要としながら, 精度, 後方サンプリング, スペクトル挙動, 時間安定性について検討する。
単純な拡散に基づくアプローチであっても、トレーニング時のアンロールのような最先端の安定化技術と同等でありながら、精度と時間的安定性の観点から、複数の確立したフロー予測手法より優れていることが判明した。
論文 参考訳(メタデータ) (2023-09-04T18:01:42Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Conditional Permutation Invariant Flows [23.740061786510417]
トラクタブルログ密度を持つ集合値データの条件付き生成確率モデルを提案する。
これらのダイナミクスは、学習可能なセット単位の項とペアの相互作用によって駆動され、どちらもディープニューラルネットワークによってパラメータ化される。
本稿では,(1)視覚的に特定された地図情報に条件付けされた複雑な交通シーン生成,(2)画像に直接条件付けされたオブジェクト境界ボックス生成などのアプリケーションを通じて,このモデルの有用性を解説する。
論文 参考訳(メタデータ) (2022-06-17T21:43:38Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。