論文の概要: Efficient Neural Hybrid System Learning and Transition System Abstraction for Dynamical Systems
- arxiv url: http://arxiv.org/abs/2411.10240v1
- Date: Fri, 15 Nov 2024 14:53:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:55.931461
- Title: Efficient Neural Hybrid System Learning and Transition System Abstraction for Dynamical Systems
- Title(参考訳): 動的システムのための効率的なニューラルハイブリッドシステム学習と遷移系抽象化
- Authors: Yejiang Yang, Zihao Mo, Weiming Xiang,
- Abstract要約: システムダイナミクスを学ぶために、低レベルのモデルが訓練されます。
ハイレベルモデルは、低レベルなニューラルハイブリッドシステムモデルを抽象化するために訓練される。
- 参考スコア(独自算出の注目度): 1.1470070927586018
- License:
- Abstract: This paper proposes a neural network hybrid modeling framework for dynamics learning to promote an interpretable, computationally efficient way of dynamics learning and system identification. First, a low-level model will be trained to learn the system dynamics, which utilizes multiple simple neural networks to approximate the local dynamics generated from data-driven partitions. Then, based on the low-level model, a high-level model will be trained to abstract the low-level neural hybrid system model into a transition system that allows Computational Tree Logic Verification to promote the model's ability with human interaction and verification efficiency.
- Abstract(参考訳): 本稿では、動的学習とシステム識別の解釈可能で計算効率の良い方法を促進するために、動的学習のためのニューラルネットワークハイブリッドモデリングフレームワークを提案する。
まず、低レベルのモデルをトレーニングして、複数の単純なニューラルネットワークを使用して、データ駆動パーティションから生成された局所的ダイナミクスを近似するシステムダイナミクスを学習する。
次に、低レベルのモデルに基づいて、高レベルのモデルを使用して、低レベルのニューラルハイブリッドシステムモデルを、コンピュータツリー論理検証(Computational Tree Logic Verification)による、人間のインタラクションと検証効率によるモデルの能力向上を可能にするトランジションシステムに抽象化する。
関連論文リスト
- Learning Subsystem Dynamics in Nonlinear Systems via Port-Hamiltonian Neural Networks [0.0]
ポート・ハミルトンニューラルネットワーク(pHNN)は、物理法則とディープラーニング技術を統合する強力なモデリングツールとして登場している。
本研究では,入力出力測定のみに基づいて,pHNNを用いてサブシステムを特定する手法を提案する。
論文 参考訳(メタデータ) (2024-11-08T17:41:51Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - A Transition System Abstraction Framework for Neural Network Dynamical
System Models [2.414910571475855]
本稿では,ニューラルネットワーク力学系モデルのためのトランジションシステム抽象化フレームワークを提案する。
このフレームワークは、データ駆動型ニューラルネットワークモデルをトランジションシステムに抽象化し、ニューラルネットワークモデルを解釈可能にする。
論文 参考訳(メタデータ) (2024-02-18T23:49:18Z) - On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
ニューラルネットワークがそのようなシステムを学ぶ際に提供するアーキテクチャの規則化について論じる。
動的システムをモデル化する際の複数の問題を解決するために,レイヤ数が少ない単純な座標ネットワークが利用できることを示す。
論文 参考訳(メタデータ) (2023-03-10T06:21:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Physics guided neural networks for modelling of non-linear dynamics [0.0]
この研究は、ディープニューラルネットワークの中間層に部分的に既知の情報を注入することで、モデルの精度を向上し、モデルの不確実性を低減し、トレーニング中に収束性を向上させることを実証する。
これらの物理誘導ニューラルネットワークの価値は、非線形系理論においてよく知られた5つの方程式で表される様々な非線形力学系の力学を学習することによって証明されている。
論文 参考訳(メタデータ) (2022-05-13T19:06:36Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。