論文の概要: Exact and approximate error bounds for physics-informed neural networks
- arxiv url: http://arxiv.org/abs/2411.13848v1
- Date: Thu, 21 Nov 2024 05:15:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:17:41.510852
- Title: Exact and approximate error bounds for physics-informed neural networks
- Title(参考訳): 物理インフォームドニューラルネットワークのエクササイズと近似誤差境界
- Authors: Augusto T. Chantada, Pavlos Protopapas, Luca Gomez Bachar, Susana J. Landau, Claudia G. Scóccola,
- Abstract要約: 非線形一階ODEの物理インフォームドニューラルネットワーク(PINN)の誤差境界計算における重要な進歩を報告する。
PINN法が非線形一階ODEに対して提供する解の誤差を記述する一般表現を与える。
本稿では,一般の場合の近似境界と特定の場合の正確な境界を計算する手法を提案する。
- 参考スコア(独自算出の注目度): 1.236974227340167
- License:
- Abstract: The use of neural networks to solve differential equations, as an alternative to traditional numerical solvers, has increased recently. However, error bounds for the obtained solutions have only been developed for certain equations. In this work, we report important progress in calculating error bounds of physics-informed neural networks (PINNs) solutions of nonlinear first-order ODEs. We give a general expression that describes the error of the solution that the PINN-based method provides for a nonlinear first-order ODE. In addition, we propose a technique to calculate an approximate bound for the general case and an exact bound for a particular case. The error bounds are computed using only the residual information and the equation structure. We apply the proposed methods to particular cases and show that they can successfully provide error bounds without relying on the numerical solution.
- Abstract(参考訳): 近年,従来の数値解法に代わる微分方程式の解法としてのニューラルネットワークの利用が増加している。
しかし、得られた解に対する誤差境界は特定の方程式に対してのみ発達している。
本研究では,非線形一階ODEの物理インフォームドニューラルネットワーク(PINN)の誤差境界計算における重要な進歩を報告する。
PINN法が非線形一階ODEに対して提供する解の誤りを記述した一般表現を与える。
さらに,一般の場合の近似境界と特定の場合の正確な境界を計算する手法を提案する。
誤差境界は、残余情報と方程式構造のみを用いて計算される。
提案手法を特定のケースに適用し,数値解に頼らずにエラー境界を正しく提供できることを示す。
関連論文リスト
- Transformed Physics-Informed Neural Networks for The Convection-Diffusion Equation [0.0]
特異な摂動問題には、数値的に解くのが難しい急な境界層を持つ解が存在する。
有限差分法のような従来の数値法は、安定かつ正確な解を得るために洗練されたメッシュを必要とする。
我々は,物理インフォームドニューラルネットワーク(PINN)を用いて特異摂動問題の数値解を生成することを検討する。
論文 参考訳(メタデータ) (2024-09-12T00:24:21Z) - Augmented neural forms with parametric boundary-matching operators for solving ordinary differential equations [0.0]
本稿では,最適化可能な境界マッチングを持つ適切なニューラルフォームを体系的に構築するフォーマリズムを提案する。
ニューマン条件やロビン条件の問題をパラメトリックディリクレ条件の等価問題に変換する新しい手法を記述する。
提案手法は,一階および二階の常微分方程式と一階のシステムを含む多種多様な問題に対して実験を行った。
論文 参考訳(メタデータ) (2024-04-30T11:10:34Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Certified machine learning: Rigorous a posteriori error bounds for PDE
defined PINNs [0.0]
本稿では,物理インフォームドニューラルネットワークの予測誤差に関する厳密な上限を示す。
これを輸送方程式、熱方程式、ナビエ・ストークス方程式、クライン・ゴルドン方程式の4つの問題に適用する。
論文 参考訳(メタデータ) (2022-10-07T09:49:18Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Evaluating Error Bound for Physics-Informed Neural Networks on Linear
Dynamical Systems [1.2891210250935146]
本稿では、微分方程式の線形系のクラスで訓練された物理インフォームドニューラルネットワークに対して、数学的に明示的な誤差境界を導出できることを示す。
我々の研究は、損失関数として知られ、使われているネットワーク残基と、一般には知られていない解の絶対誤差とのリンクを示す。
論文 参考訳(メタデータ) (2022-07-03T20:23:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Error Estimation and Correction from within Neural Network Differential
Equation Solvers [3.04585143845864]
本稿では,ニューラルネットワーク微分方程式解法における誤差推定と補正の戦略について述べる。
提案手法では, 真の解の事前知識を必要とせず, 損失関数と解推定に伴う誤差との明確な関係を求める。
論文 参考訳(メタデータ) (2020-07-09T11:01:44Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。