論文の概要: Factoring integers via Schnorr's algorithm assisted with VQE
- arxiv url: http://arxiv.org/abs/2411.16632v1
- Date: Mon, 25 Nov 2024 18:11:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:22:00.271746
- Title: Factoring integers via Schnorr's algorithm assisted with VQE
- Title(参考訳): VQEを補助するシュノーラーアルゴリズムによる整数のファクタリング
- Authors: Luis Sánchez Cano, Ginés Carrascal de las Heras, Guillermo Botella Juan, Alberto del Barrio García,
- Abstract要約: 現在の非対称暗号は、古典的コンピュータは効率よく大きな整数を乗算できるが、逆演算、因子化ははるかに複雑である、という原理に基づいている。
十分に大きな整数の場合、この分解プロセスは古典的なコンピュータで何百年、何千年もかかる。
この研究は、この論文を分析し、彼らが行った実験を再現するが、異なる量子法(VQE)で番号を1961年に分解できる。
- 参考スコア(独自算出の注目度): 0.0937465283958018
- License:
- Abstract: Current asymmetric cryptography is based on the principle that while classical computers can efficiently multiply large integers, the inverse operation, factorization, is significantly more complex. For sufficiently large integers, this factorization process can take in classical computers hundreds or even thousands of years to complete. However, there exist some quantum algorithms that might be able to factor integers theoretically -- the theory works properly, but the hardware requirements are far away from what we can build nowadays -- and, for instance, Yan, B. et al. ([14]) claim to have constructed a hybrid algorithm which could be able even to challenge RSA-2048 in the near future. This work analyses this article and replicates the experiments they carried out, but with a different quantum method (VQE), being able to factor the number 1961.
- Abstract(参考訳): 現在の非対称暗号は、古典的コンピュータは効率よく大きな整数を乗算できるが、逆演算、因子化ははるかに複雑である、という原理に基づいている。
十分に大きな整数の場合、この分解プロセスは古典的なコンピュータで何百年、何千年もかかる。
しかしながら、理論上は整数を分解できるかもしれないいくつかの量子アルゴリズムがある -- この理論は適切に機能するが、ハードウェア要件は、現在構築できるものから遠く離れている -- 例えば、Yan, B. et al ([14])は、近い将来RSA-2048に挑戦できるようなハイブリッドアルゴリズムを構築したと主張している。
本研究は、この論文を分析して、彼らが行った実験を再現するが、異なる量子法(VQE)を用いて、1961年の数値を分解することができる。
関連論文リスト
- Quantum inspired factorization up to 100-bit RSA number in polynomial time [0.0]
我々はシュノーアの数学的枠組みに基づくRSA因子化ビルディングを攻撃した。
我々は、量子システムにおける最適化問題を符号化する最大256ビットのRSA数を分解する。
結果は現在の通信インフラのセキュリティを損なうものではない。
論文 参考訳(メタデータ) (2024-10-21T18:00:00Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Integer Factorization by Quantum Measurements [0.0]
量子アルゴリズムは、古典的コンピュータでは解けない計算問題を解くために量子力学を使うことが進行中の努力の中心である。
既知の量子アルゴリズムの中で、特別な役割はShorアルゴリズム、すなわち整数分解のための量子時間アルゴリズムによって演じられる。
ここでは、別の真の量子特性(量子計測)に基づく整数分解の異なるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-19T17:00:01Z) - A comment on "Factoring integers with sublinear resources on a
superconducting quantum processor" [0.0]
そこで我々はSchnorr's lattice-based integer factorizationアルゴリズムのオープンソース実装について述べる。
我々の実装は、シュノーラーの整数を70ビットまでしか持たないハイブリッド量子+古典版に対する主張された部分線型格子次元が示している。
我々は、我々の実装が、他のハイブリッド量子/古典的整数分解アルゴリズムのアイデアをテストするための、コミュニティの場として機能することを願っている。
論文 参考訳(メタデータ) (2023-07-18T21:46:54Z) - Quantum Multiplication Algorithm Based on the Convolution Theorem [0.0]
時間複雑性を持つ整数乗算の量子アルゴリズムをO(sqrtnlog2 n)$で提案する。
Harveyアルゴリズムとは異なり、我々のアルゴリズムは極大数にのみ適用できるという制限はない。
また、古典的乗法アルゴリズムの歴史と発展を概観し、量子資源がこの根本的な問題に対してどのように新たな視点と可能性を提供できるかを探求する動機付けとなる。
論文 参考訳(メタデータ) (2023-06-14T12:40:54Z) - Factoring integers with sublinear resources on a superconducting quantum
processor [11.96383198580683]
Shorのアルゴリズムは、公開鍵暗号システムに基づく情報セキュリティに深刻な挑戦をしている。
広く使われているRSA-2048スキームを破るためには、数百万の物理量子ビットが必要である。
本稿では,古典的格子削減法と量子近似最適化アルゴリズムを組み合わせることで,整数分解のための普遍量子アルゴリズムについて報告する。
論文 参考訳(メタデータ) (2022-12-23T14:45:02Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Quantum Computing without Quantum Computers: Database Search and Data
Processing Using Classical Wave Superposition [101.18253437732933]
スピン波重畳を用いた磁気データベース探索の実験データを示す。
古典的な波動に基づくアプローチは、量子コンピュータと同じ速度でデータベース検索を行う場合もあると我々は論じる。
論文 参考訳(メタデータ) (2020-12-15T16:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。