論文の概要: Statistical features of quantum chaos using the Krylov operator complexity
- arxiv url: http://arxiv.org/abs/2411.18436v1
- Date: Wed, 27 Nov 2024 15:20:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:22.864004
- Title: Statistical features of quantum chaos using the Krylov operator complexity
- Title(参考訳): クリロフ作用素複雑性を用いた量子カオスの統計的特徴
- Authors: Zhuoran Li, Wei Fan,
- Abstract要約: 非カオスの場合、結果の分布はほぼ重なり合う。
カオスの場合、彼らは2つのよく分断されたグループに分割された。
この重なり合う分離挙動は、カオス力学と非カオス力学を区別する特徴である。
- 参考スコア(独自算出の注目度): 7.338134750636499
- License:
- Abstract: Recently the Krylov operator complexity is proposed to evaluate the operator growth in quantum systems, and the variance of its Lanzcos coefficients is used as an important parameter for chaos. In this paper, we generate samples of random initial operators from given probability distribtions (GOE, GUE and the uniform distribution). For the Sinai billiard model, we study the statistical properties of the variance of Lanzcos coefficients in the associated Krylov space. Depending on whether the system is chaotic or not, the resulting distribution of the variance have different behaviors. In the nonchaotic case, the resulting distributions are almost overlapping together. In the chaotic case, they split into two well-separated groups. Besides, all the resulting distributions of the variance are the normal distribution, as long as the matrix size of the initial operator is large enough. This overlap-to-separation behavior, in the resulting distribution of the variance of Lanczos coefficients, may be a characteristics to distinguish chaotic and nonchaotic dynamics.
- Abstract(参考訳): 近年、量子系の作用素成長を評価するためにクリロフ作用素の複雑さが提案され、カオスの重要なパラメータとしてランツコス係数の分散が用いられる。
本稿では,確率分割(GOE,GUE,均一分布)からランダムな初期演算子のサンプルを生成する。
シナイ・ビリヤードモデルに対し、関連するクリロフ空間におけるランツコス係数の分散の統計的性質を研究する。
システムがカオスであるか否かによって、結果として生じる分散の分布は異なる振る舞いを持つ。
非カオスの場合、結果の分布はほぼ重なり合う。
カオスの場合、彼らは2つのよく分断されたグループに分割された。
さらに、初期作用素の行列サイズが十分大きい限り、結果の分散の分布は正規分布である。
この重複分離挙動は、ランツォス係数の分散の結果として生じる分布において、カオス力学と非カオス力学を区別する特性である可能性がある。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Statistical and Geometrical properties of regularized Kernel Kullback-Leibler divergence [7.273481485032721]
Bach [2022] が導入したカーネル共分散作用素によるクルバック・リーブラ発散の統計的および幾何学的性質について検討する。
密度比を含む古典的なクルバック・リーブラー(KL)の発散とは異なり、KKLは再現可能なカーネルヒルベルト空間(RKHS)における共分散作用素(埋め込み)による確率分布を比較する。
この斬新な発散は、確率分布と最大平均誤差のようなカーネル埋め込みメトリクスの間の標準のクルバック・リーバーと平行だが異なる側面を共有する。
論文 参考訳(メタデータ) (2024-08-29T14:01:30Z) - Relaxation Fluctuations of Correlation Functions: Spin and Random Matrix Models [0.0]
本稿では,量子カオスの診断尺度として,ある相関関数の変動平均と分散について検討する。
モデルの3つの異なる位相(エルゴード相、フラクタル相、局所化相)を同定する。
論文 参考訳(メタデータ) (2024-07-31T14:45:46Z) - Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting [64.0722630873758]
我々は、ある微分方程式のオイラー・マルヤマ離散化のように見える、より一般で幅広いマルコフ連鎖、伊藤鎖を考える。
伊藤鎖の法則と微分方程式の間の$W_2$-距離の有界性を証明する。
論文 参考訳(メタデータ) (2023-10-09T18:38:56Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Classification of Heavy-tailed Features in High Dimensions: a
Superstatistical Approach [1.4469725791865984]
我々は2つのデータポイントの雲と一般的なセントロイドの混合の学習を特徴付ける。
得られた推定器の一般化性能について検討し、正規化の役割を解析し、分離性遷移を解析した。
論文 参考訳(メタデータ) (2023-04-06T07:53:05Z) - Statistical Properties of the Entropy from Ordinal Patterns [55.551675080361335]
大規模な時系列モデルに対するエントロピー・統計複雑性の連立分布を知っていれば、今日まで利用できない統計テストが可能になるだろう。
実正規化エントロピーが零でも1でもないモデルに対して、経験的シャノンのエントロピーの分布を特徴づける。
2つの信号が同じシャノンのエントロピーを持つ順序パターンを生成するという仮説を否定するのに十分な証拠があるかどうかを検証する。
論文 参考訳(メタデータ) (2022-09-15T23:55:58Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
我々は,高次元ロバストな統計問題を解くためにGAN(Generative Adversarial Networks)を設計するためのフレームワークを提供する。
我々の研究は、これらをロバスト平均推定、第二モーメント推定、ロバスト線形回帰に拡張する。
技術面では、提案したGAN損失は、スムーズで一般化されたコルモゴロフ-スミルノフ距離と見なすことができる。
論文 参考訳(メタデータ) (2022-02-02T20:11:33Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
我々は、異なる、しかし相関のある特徴に基づいて訓練された一般化線形モデルの集合における揺らぎの研究の理論を開発する。
一般凸損失と高次元限界における正則化のための経験的リスク最小化器の結合分布の完全な記述を提供する。
論文 参考訳(メタデータ) (2022-01-31T17:44:58Z) - Signatures of Chaos in Non-integrable Models of Quantum Field Theory [0.0]
1+1)D量子場理論(QFT)モデルにおける量子カオスのシグネチャについて検討する。
我々は、二重正弦ガードンに焦点をあて、巨大な正弦ガードンと$phi4$モデルの研究も行っている。
論文 参考訳(メタデータ) (2020-12-15T18:56:20Z) - Contextuality scenarios arising from networks of stochastic processes [68.8204255655161]
経験的モデルは、その分布が X 上の合同分布を極小化することができなければ文脈的と言える。
我々は、多くのプロセス間の相互作用という、文脈的経験的モデルの異なる古典的な源泉を示す。
長期にわたるネットワークの統計的挙動は、経験的モデルを一般的な文脈的かつ強い文脈的にする。
論文 参考訳(メタデータ) (2020-06-22T16:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。