Revolve: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization
- URL: http://arxiv.org/abs/2412.03092v1
- Date: Wed, 04 Dec 2024 07:44:35 GMT
- Title: Revolve: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization
- Authors: Peiyan Zhang, Haibo Jin, Leyang Hu, Xinnuo Li, Liying Kang, Man Luo, Yangqiu Song, Haohan Wang,
- Abstract summary: We introduce REVOLVE, an optimization method that tracks how "R"esponses "EVOLVE" across iterations in large language models (LLMs)
Experimental results demonstrate that REVOLVE outperforms competitive baselines, achieving a 7.8% improvement in prompt optimization, a 20.72% gain in solution refinement, and a 29.17% increase in code optimization.
- Score: 42.570114760974946
- License:
- Abstract: Recent advancements in large language models (LLMs) have significantly enhanced the ability of LLM-based systems to perform complex tasks through natural language processing and tool interaction. However, optimizing these LLM-based systems for specific tasks remains challenging, often requiring manual interventions like prompt engineering and hyperparameter tuning. Existing automatic optimization methods, such as textual feedback-based techniques (e.g., TextGrad), tend to focus on immediate feedback, analogous to using immediate derivatives in traditional numerical gradient descent. However, relying solely on such feedback can be limited when the adjustments made in response to this feedback are either too small or fluctuate irregularly, potentially slowing down or even stalling the optimization process. To overcome these challenges, more adaptive methods are needed, especially in situations where the system's response is evolving slowly or unpredictably. In this paper, we introduce REVOLVE, an optimization method that tracks how "R"esponses "EVOLVE" across iterations in LLM systems. By focusing on the evolution of responses over time, REVOLVE enables more stable and effective optimization by making thoughtful, progressive adjustments at each step. Experimental results demonstrate that REVOLVE outperforms competitive baselines, achieving a 7.8% improvement in prompt optimization, a 20.72% gain in solution refinement, and a 29.17% increase in code optimization. Additionally, REVOLVE converges in fewer iterations, resulting in significant computational savings. These advantages highlight its adaptability and efficiency, positioning REVOLVE as a valuable tool for optimizing LLM-based systems and accelerating the development of next-generation AI technologies. Code is available at: https://github.com/Peiyance/REVOLVE.
Related papers
- Can Large Language Models Be Trusted as Black-Box Evolutionary Optimizers for Combinatorial Problems? [8.082897040940447]
Large Language Models (LLMs) offer a game-changing solution with their extensive knowledge and could democratize the optimization paradigm.
It is therefore imperative to evaluate the suitability of LLMs as evolutionary mechanism (EVO)
arXiv Detail & Related papers (2025-01-25T05:19:19Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected.
Recent advancements enable end-to-end optimization of these parameters using an LLM.
This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems.
arXiv Detail & Related papers (2024-10-21T18:06:25Z) - Towards Explainable Evolution Strategies with Large Language Models [0.0]
This paper introduces an approach that integrates self-adaptive Evolution Strategies (ES) with Large Language Models (LLMs)
By employing a self-adaptive ES equipped with a restart mechanism, we effectively navigate the challenging landscapes of benchmark functions.
An LLM is then utilized to process these logs, generating concise, user-friendly summaries.
arXiv Detail & Related papers (2024-07-11T09:28:27Z) - A Problem-Oriented Perspective and Anchor Verification for Code Optimization [43.28045750932116]
Large language models (LLMs) have shown remarkable capabilities in solving various programming tasks.
This paper investigates the capabilities of LLMs in optimizing code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
We show that gradient-based and high-level LLMs can effectively collaborate a combined optimization framework.
In this paper, we show that these complementary to each other and can effectively collaborate a combined optimization framework.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.
We identify two pivotal factors in model parameter learning: update direction and update method.
We develop a capable Gradient-inspired Prompt-based GPO.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Learning Performance-Improving Code Edits [107.21538852090208]
We introduce a framework for adapting large language models (LLMs) to high-level program optimization.
First, we curate a dataset of performance-improving edits made by human programmers of over 77,000 competitive C++ programming submission pairs.
For prompting, we propose retrieval-based few-shot prompting and chain-of-thought, and for finetuning, these include performance-conditioned generation and synthetic data augmentation based on self-play.
arXiv Detail & Related papers (2023-02-15T18:59:21Z) - A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments [9.098403098464704]
Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems.
This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems.
Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-11-05T11:19:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.