論文の概要: Natural Probability
- arxiv url: http://arxiv.org/abs/2412.04689v1
- Date: Fri, 06 Dec 2024 01:04:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:55:06.186736
- Title: Natural Probability
- Title(参考訳): 自然確率
- Authors: Brett Parker,
- Abstract要約: 本稿では、純粋量子システム内の古典的情報をモデル化しようとする試みに基づいて、確率の新しい物理理論をスケッチする。
我々は、時空で局所化された射影演算子を用いて符号化された量子情報に重点を置いて、ズレックの量子ダーウィン理論のバージョンを用いて古典的な情報をモデル化する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: How should we model an observer within quantum mechanics or quantum field theory? How can classical physics emerge from a quantum model, and why should classical probability be useful? How can we model a selective measurement entirely within a closed quantum system? This paper sketches a new physical theory of probability based on an attempt to model classical information within a purely quantum system. We model classical information using a version of Zurek's theory of Quantum Darwinism, with emphasis on quantum information encoded using projection operators localised in spacetime. This version of Quantum Darwinism is compatible with quantum field theory, and does not require any artificial division of a quantum system into subsystems. The main innovation is our attempt to provide a physical explanation of probability. Decoherence is the physical mechanism behind Quantum Darwinism or the `branching of quantum worlds'. Assuming a type of perfect decoherence we construct a conventional probabilistic model for classical information. This, however, is not our theory of natural probability, and does not quite demonstrate the validity of Bayesian reasoning. Instead, our theory of natural probability arises from careful consideration of errors in decoherence: roughly speaking, we don't observe low probability events because they are swamped by quantum noise.
- Abstract(参考訳): 量子力学や量子場理論においてオブザーバをどうモデル化するか?
古典物理学は量子モデルからどのように現われるのか、なぜ古典的確率が役に立つのか?
閉量子システム内で選択的な測定をどうモデル化するか?
本稿では、純粋量子システム内の古典的情報をモデル化しようとする試みに基づいて、確率の新しい物理理論をスケッチする。
我々は、時空で局所化された射影演算子を用いて符号化された量子情報に重点を置いて、ズレックの量子ダーウィン理論のバージョンを用いて古典的な情報をモデル化する。
量子ダーウィン論のこのバージョンは、量子場理論と互換性があり、量子システムのサブシステムへの人工的な分割を必要としない。
主なイノベーションは、確率を物理的に説明しようとする私たちの試みです。
デコヒーレンス(英: Decoherence)は、量子ダーウィン主義や「量子世界の分岐」の背後にある物理的なメカニズムである。
完全デコヒーレンスの一種を仮定すると、古典情報に対する従来の確率モデルを構築する。
しかし、これは自然確率の理論ではなく、ベイズ的推論の妥当性を十分に示していない。
その代わり、我々の自然確率の理論は、デコヒーレンスにおける誤りを慎重に考慮することから生じ、概して、量子ノイズに浸かっているため、低い確率事象を観測しない。
関連論文リスト
- The probabilistic world II : Quantum mechanics from classical statistics [0.0]
確率的環境における活動的あるいは静かな状態のニューロンに基づく単純なニューロモルフィックコンピュータは、絡み合った2量子ビット系のユニタリ変換を学習することができる。
我々の明示的な構成は、古典統計学における量子力学の埋め込みのノーゴー定理が回避されるという証明を構成する。
論文 参考訳(メタデータ) (2024-08-09T14:02:55Z) - The Hidden Ontological Variable in Quantum Harmonic Oscillators [0.0]
標準的な量子力学的調和振動子は、完全に古典的なシステムと正確に二重の関係を持つ。
古典的な系が常に「確率の確率」という規則に従う場合、同じ確率は量子系の量子確率である。
論文 参考訳(メタデータ) (2024-07-25T16:05:18Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
一般確率論として量子論(QT)の定式化を導入するが、準観測作用素(QEOs)で表される。
区別不可能な粒子と識別不能な粒子の両方に対するQTをこの方法で定式化できることを示します。
古典的なダイスに対する有限交換可能な確率は、QTと同じくらい奇数であることを示す。
論文 参考訳(メタデータ) (2022-03-08T14:47:39Z) - About the description of physical reality of Bell's experiment [91.3755431537592]
ローカルリアリズムの最も単純な形式に対応する隠れ変数モデルが最近導入された。
これは、より理想的なベルの実験のための量子力学の予測を再現する。
新しいタイプの量子コンピュータはまだ存在せず、理論上さえ存在しない。
論文 参考訳(メタデータ) (2021-09-06T15:55:13Z) - Quantum fermions from classical bits [0.0]
単純なセルオートマトンは相互作用を持つ相対論的フェルミオン量子場理論と等価である。
オートマトンはビット構成に決定論的に作用する。
論文 参考訳(メタデータ) (2021-06-29T15:47:40Z) - Tossing Quantum Coins and Dice [0.0]
このケースは、量子情報処理と量子コンピューティングに用いられる典型的なフレームワークを示すため、量子手順の重要な例である。
量子と古典条件の確率の差の明確化に重点が置かれている。
論文 参考訳(メタデータ) (2021-03-31T11:39:56Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
古典的アリス(Alice)と量子的ボブ(Quantum Bob)が古典的なチャネルを通してのみ通信できるような設定を考える。
悪質な量子逆数の場合,ブラックボックスシミュレーションを用いた2次元量子関数を実現することは,一般に不可能であることを示す。
我々は、QMA関係Rの古典的量子知識(PoQK)プロトコルを入力として、古典的当事者によって検証可能なRのゼロ知識PoQKを出力するコンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-15T17:55:31Z) - Characterization of the probabilistic models that can be embedded in
quantum theory [0.0]
超選択規則を持つ古典的および標準的な量子論のみが物理的デコヒーレンス写像から生じうることを示す。
この結果は、量子論の実験的な実験において、量子論をいかに(あるいは不可能に)偽造するかを明確にすることによって、大きな結果をもたらす。
論文 参考訳(メタデータ) (2020-04-13T18:09:39Z) - From a quantum theory to a classical one [117.44028458220427]
量子対古典的交叉を記述するための形式的アプローチを提示し議論する。
この手法は、1982年にL. Yaffeによって、大きな$N$の量子場理論に取り組むために導入された。
論文 参考訳(メタデータ) (2020-04-01T09:16:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。