論文の概要: STONet: A novel neural operator for modeling solute transport in micro-cracked reservoirs
- arxiv url: http://arxiv.org/abs/2412.05576v1
- Date: Sat, 07 Dec 2024 07:53:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:26.068423
- Title: STONet: A novel neural operator for modeling solute transport in micro-cracked reservoirs
- Title(参考訳): STONet:マイクロクラック貯水池における溶質輸送のモデリングのための新しいニューラル演算子
- Authors: Ehsan Haghighat, Mohammad Hesan Adeli, S Mohammad Mousavi, Ruben Juanes,
- Abstract要約: マイクロクラック型貯水池における汚染物質輸送を効率的にモデル化するニューラルオペレーターであるソルトトランスポート・オペレーター・ネットワーク(STONet)を開発した。
このモデルは異なるネットワークを組み合わせて、異種特性を効果的にエンコードする。
数値実験により, 有限要素法に匹敵する精度が得られた。
- 参考スコア(独自算出の注目度): 0.49998148477760973
- License:
- Abstract: In this work, we develop a novel neural operator, the Solute Transport Operator Network (STONet), to efficiently model contaminant transport in micro-cracked reservoirs. The model combines different networks to encode heterogeneous properties effectively. By predicting the concentration rate, we are able to accurately model the transport process. Numerical experiments demonstrate that our neural operator approach achieves accuracy comparable to that of the finite element method. The previously introduced Enriched DeepONet architecture has been revised, motivated by the architecture of the popular multi-head attention of transformers, to improve its performance without increasing the compute cost. The computational efficiency of the proposed model enables rapid and accurate predictions of solute transport, facilitating the optimization of reservoir management strategies and the assessment of environmental impacts. The data and code for the paper will be published at https://github.com/ehsanhaghighat/STONet.
- Abstract(参考訳): 本研究では,マイクロクラック型貯水池における汚染物質輸送を効率的にモデル化するニューラルオペレータであるソルトトランスポート・オペレーター・ネットワーク(STONet)を開発した。
このモデルは異なるネットワークを組み合わせて、異種特性を効果的にエンコードする。
濃度を予測することにより、輸送過程を正確にモデル化することができる。
数値実験により, 有限要素法に匹敵する精度が得られた。
以前導入されたEnriched DeepONetアーキテクチャは、コンピュートコストを増大させることなくパフォーマンスを向上させるために、トランスフォーマーのマルチヘッドアテンションのアーキテクチャに動機付けられている。
提案モデルの計算効率は, 溶質輸送の迅速かつ正確な予測を可能にし, 貯水池管理戦略の最適化と環境影響評価を容易にする。
論文のデータとコードはhttps://github.com/ehsanhaghighat/STONet.comで公開される。
関連論文リスト
- Integrating Neural Operators with Diffusion Models Improves Spectral Representation in Turbulence Modeling [3.9134883314626876]
我々は、乱流の代理モデリングにおいて、ニューラル演算子のスペクトル制限に対処するために、拡散モデルとニューラル演算子を統合する。
我々のアプローチは、多様なデータセット上で異なるニューラル演算子に対して検証されている。
この研究は、生成モデルとニューラル演算子を組み合わせるための新しいパラダイムを確立し、乱流系の代理モデリングを前進させる。
論文 参考訳(メタデータ) (2024-09-13T02:07:20Z) - Neural Operator-Based Proxy for Reservoir Simulations Considering Varying Well Settings, Locations, and Permeability Fields [0.0]
従来の貯水池シミュレータよりも優れた1つのフーリエニューラル演算子(FNO)サロゲートを提案する。
圧力と飽和予測の95%の最大平均相対誤差は5%未満である。
このモデルは、履歴マッチングと貯水池キャラクタリゼーションの手順を、数桁のオーダーで高速化することができる。
論文 参考訳(メタデータ) (2024-07-13T00:26:14Z) - A Novel A.I Enhanced Reservoir Characterization with a Combined Mixture of Experts -- NVIDIA Modulus based Physics Informed Neural Operator Forward Model [0.6282171844772422]
我々は,貯水池履歴マッチングの課題を効果的に解決するために,貯水池のキャラクタリゼーションのための高度なワークフローを開発した。
この方法は、洗練されたクラスタ分類回帰フレームワークにおいて、フォワードモデルとして物理インフォームドニューラル演算子(PINO)を統合する。
我々の統合モデルはPINO-Res-Simと呼ばれ、圧力、飽和度、石油、水、ガスの生産速度を含む重要なパラメータを出力します。
論文 参考訳(メタデータ) (2024-04-20T10:28:24Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
ニューラルネットワークによるエネルギー最小化のためのGradual Optimization Learning Framework(GOLF)は、必要な追加データを大幅に削減する。
GOLFでトレーニングしたニューラルネットワークは,種々の薬物様分子のベンチマークにおいて,オラクルと同等に動作することを示す。
論文 参考訳(メタデータ) (2023-11-05T11:48:08Z) - ICN: Interactive Convolutional Network for Forecasting Travel Demand of
Shared Micromobility [5.6973480878880824]
本稿では,共有マイクロモビリティのための旅行需要を予測するための,対話型畳み込みネットワーク(ICN)というディープラーニングモデルを提案する。
提案手法はシカゴ, IL, オースチン, TXの2つの実世界のケーススタディに対して評価された。
論文 参考訳(メタデータ) (2023-06-24T08:08:04Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2
Benchmark [133.46066694893318]
最適輸送のためのニューラルネットワークに基づく解法の性能を評価する。
既存の解法では,下流タスクでは良好に機能するにもかかわらず,最適な輸送マップを復元できないことがわかった。
論文 参考訳(メタデータ) (2021-06-03T15:59:28Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
本論文では,記憶神経ネットワークと呼ばれる新しい繰り返しニューラルネットワークを用いて,時空間的視線軌道予測の問題を解くことを試みる。
提案手法は計算量が少なく,LSTMやGRUを用いた他のディープラーニングモデルと比較すると,単純なアーキテクチャである。
論文 参考訳(メタデータ) (2021-02-24T05:02:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。