論文の概要: Quantum Machine Learning in Log-based Anomaly Detection: Challenges and Opportunities
- arxiv url: http://arxiv.org/abs/2412.13529v1
- Date: Wed, 18 Dec 2024 06:13:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:46:52.077714
- Title: Quantum Machine Learning in Log-based Anomaly Detection: Challenges and Opportunities
- Title(参考訳): ログベース異常検出における量子機械学習の課題と可能性
- Authors: Jiaxing Qi, Chang Zeng, Zhongzhi Luan, Shaohan Huang, Shu Yang, Yao Lu, Bin Han, Hailong Yang, Depei Qian,
- Abstract要約: 我々は、LogADのコンテキストでQMLモデルを評価するための統合フレームワーク、我々のフレームワークを紹介します。
DeepLog、LogAnomaly、LogRobustといった最先端のメソッドが私たちのフレームワークに含まれている。
評価はQMLの性能に重要な要素、例えば特異性、回路数、回路設計、量子状態符号化にまで及んでいる。
- 参考スコア(独自算出の注目度): 36.437593835024394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Log-based anomaly detection (LogAD) is the main component of Artificial Intelligence for IT Operations (AIOps), which can detect anomalous that occur during the system on-the-fly. Existing methods commonly extract log sequence features using classical machine learning techniques to identify whether a new sequence is an anomaly or not. However, these classical approaches often require trade-offs between efficiency and accuracy. The advent of quantum machine learning (QML) offers a promising alternative. By transforming parts of classical machine learning computations into parameterized quantum circuits (PQCs), QML can significantly reduce the number of trainable parameters while maintaining accuracy comparable to classical counterparts. In this work, we introduce a unified framework, \ourframework{}, for evaluating QML models in the context of LogAD. This framework incorporates diverse log data, integrated QML models, and comprehensive evaluation metrics. State-of-the-art methods such as DeepLog, LogAnomaly, and LogRobust, along with their quantum-transformed counterparts, are included in our framework.Beyond standard metrics like F1 score, precision, and recall, our evaluation extends to factors critical to QML performance, such as specificity, the number of circuits, circuit design, and quantum state encoding. Using \ourframework{}, we conduct extensive experiments to assess the performance of these models and their quantum counterparts, uncovering valuable insights and paving the way for future research in QML model selection and design for LogAD.
- Abstract(参考訳): ログベースの異常検出(LogAD)は、AIOps(Artificial Intelligence for IT Operations)の主要なコンポーネントであり、オンザフライでシステムに発生する異常を検出する。
既存の手法では、従来の機械学習技術を用いてログシーケンスの特徴を抽出し、新しいシーケンスが異常かどうかを識別する。
しかし、これらの古典的なアプローチは効率と精度のトレードオフを必要とすることが多い。
量子機械学習(QML)の出現は、有望な代替手段を提供する。
古典的な機械学習計算の一部をパラメータ化量子回路(PQC)に変換することで、QMLは古典的な量子回路に匹敵する精度を維持しながら、トレーニング可能なパラメータの数を著しく削減することができる。
本稿では、LogADのコンテキストでQMLモデルを評価するための統合フレームワークである‘ourframework{}’を紹介する。
このフレームワークには、多様なログデータ、統合されたQMLモデル、包括的な評価指標が含まれている。
DeepLog、LogAnomaly、LogRobustといった最先端の手法と量子変換された手法が我々のフレームワークに含まれる。F1スコア、精度、リコールなどの標準メトリクス以外にも、我々の評価は、特異性、回路数、回路設計、量子状態符号化など、QMLのパフォーマンスに不可欠な要因にまで拡張されている。
ここでは,これらのモデルとその量子モデルの性能を評価するための広範囲な実験を行い,価値ある知見を明らかにし,QMLモデル選択とLogADの設計における今後の研究の道を開く。
関連論文リスト
- Network Attack Traffic Detection With Hybrid Quantum-Enhanced Convolution Neural Network [9.466909402552844]
量子機械学習(QML)は、量子コンピューティングと機械学習(ML)の機能を組み合わせる
本稿では、悪意のあるトラフィックを検出するために、量子畳み込みニューラルネットワーク(QCNN)の新たなハイブリッド構造の設計と提案に焦点を当てる。
論文 参考訳(メタデータ) (2025-04-29T05:23:27Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
量子機械学習(QML)は、量子コンピューティングの利点をデータ駆動タスクに移行しようとする分野である。
入力をパウリ弦の有限集合にマッピングすることで、データ符号化に伴うコストを回避できる効率的な手法を提案する。
我々は、古典的および量子モデルに対して、テキストおよび画像分類タスクに対する我々のアプローチを評価する。
論文 参考訳(メタデータ) (2025-04-13T11:49:53Z) - Learning to Measure Quantum Neural Networks [10.617463958884528]
本稿では,量子系の可観測性,特にエルミート行列学習性を実現する新しい手法を提案する。
本手法では,パラメータ化可観測関数を通常の量子回路パラメータとともに学習するエンド・ツー・エンドの微分可能学習フレームワークを特徴とする。
数値シミュレーションにより,提案手法は変動量子回路の観測値の同定が可能であり,その結果が得られた。
論文 参考訳(メタデータ) (2025-01-10T02:28:19Z) - On the relation between trainability and dequantization of variational quantum learning models [1.7999333451993955]
変分量子機械学習(QML)のトレーニング容易性と定式化の関係について検討する。
我々はPQCベースのQMLモデルを構築するためのレシピを紹介した。
しかしながら、我々の研究は、より一般的な構造を見つけるための道のりを指している。
論文 参考訳(メタデータ) (2024-06-11T08:59:20Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
量子フェデレーション学習(QFL)は、量子機械学習(QML)モデルを使用して、複数のクライアント間の協調学習を容易にする。
関数の近似に時間的データを利用するQFLフレームワークの開発に前向きな作業は行われていない。
量子長短期メモリ(QLSTM)モデルと時間データを統合する新しいQFLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-21T21:40:47Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
我々はカーンズのSQオラクルとヴァリアントの弱い評価オラクルからインスピレーションを得ます。
評価クエリから学習するための非条件の下限を出力する,広範かつ直感的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-26T18:23:21Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - A Novel Stochastic LSTM Model Inspired by Quantum Machine Learning [0.0]
過去数年間の量子機械学習(QML)の研究は、QMLアルゴリズムが従来のアルゴリズムと同様に機能することを示唆している。
この研究は、QMLが古典機械にその性質を組み込むことで、いくつかの報告された利益を達成できるかどうかを解明することを目的としている。
論文 参考訳(メタデータ) (2023-05-17T13:44:25Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Structural risk minimization for quantum linear classifiers [0.0]
qml(quantum machine learning)は、量子コンピューティングの短期的"キラーアプリケーション"の典型的な候補の1つとして注目される。
明示的および暗黙的量子線形分類器と呼ばれる2つの密接に関連したQMLモデルの容量測定を研究する。
我々は,QMLモデルで使用される観測値のランクとフロベニウスノルムが,モデルのキャパシティを密接に制御していることを確認した。
論文 参考訳(メタデータ) (2021-05-12T10:39:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。