Load Forecasting for Households and Energy Communities: Are Deep Learning Models Worth the Effort?
- URL: http://arxiv.org/abs/2501.05000v5
- Date: Fri, 18 Jul 2025 11:46:13 GMT
- Title: Load Forecasting for Households and Energy Communities: Are Deep Learning Models Worth the Effort?
- Authors: Lukas Moosbrugger, Valentin Seiler, Philipp Wohlgenannt, Sebastian Hegenbart, Sashko Ristov, Elias Eder, Peter Kepplinger,
- Abstract summary: Energy communities (ECs) play a key role in enabling local demand shifting and enhancing self-sufficiency.<n>Data-driven forecasting has gained significant attention, but it remains insufficiently explored in many practical contexts.<n>This study evaluates the effectiveness of state-of-the-art deep learning models across various community size, historical data availability, and model complexity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy communities (ECs) play a key role in enabling local demand shifting and enhancing self-sufficiency, as energy systems transition toward decentralized structures with high shares of renewable generation. To optimally operate them, accurate short-term load forecasting is essential, particularly for implementing demand-side management strategies. With the recent rise of deep learning methods, data-driven forecasting has gained significant attention, however, it remains insufficiently explored in many practical contexts. Therefore, this study evaluates the effectiveness of state-of-the-art deep learning models-including LSTM, xLSTM, and Transformer architectures-compared to traditional benchmarks such as K-Nearest Neighbors (KNN) and persistence forecasting, across varying community size, historical data availability, and model complexity. Additionally, we assess the benefits of transfer learning using publicly available synthetic load profiles. On average, transfer learning improves the normalized mean absolute error by 1.97 percentage points when only two months of training data are available. Interestingly, for less than six months of training data, simple persistence models outperform deep learning architectures in forecast accuracy. The practical value of improved forecasting is demonstrated using a mixed-integer linear programming optimization for ECs with a shared battery energy storage system. For an energy community with 50 households, the most accurate deep learning model achieves an average reduction in financial energy costs of 8.06%. Notably, a simple KNN approach achieves average savings of 8.01%, making it a competitive and robust alternative. All implementations are publicly available to facilitate reproducibility. These findings offer actionable insights for ECs, and they highlight when the additional complexity of deep learning is warranted by performance gains.
Related papers
- Efficient Federated Learning with Timely Update Dissemination [54.668309196009204]
Federated Learning (FL) has emerged as a compelling methodology for the management of distributed data.<n>We propose an efficient FL approach that capitalizes on additional downlink bandwidth resources to ensure timely update dissemination.
arXiv Detail & Related papers (2025-07-08T14:34:32Z) - Hourly Short Term Load Forecasting for Residential Buildings and Energy Communities [0.0]
We introduce persistence models, auto-regressive-based machine learning models, and more advanced deep learning models.
We observe a 15-30% increase in the prediction accuracy of the newly introduced hourly-based forecasting models over existing approaches.
arXiv Detail & Related papers (2025-01-31T15:49:09Z) - Predictive Models in Sequential Recommendations: Bridging Performance Laws with Data Quality Insights [104.48511402784763]
We introduce the Performance Law for SR models, which aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Electrical Load Forecasting in Smart Grid: A Personalized Federated Learning Approach [9.687203504689563]
Electric load forecasting is essential for power management and stability in smart grids.
Traditional machine learning (ML) methods are often employed for load forecasting but require data sharing.
Federated learning (FL) can address this issue by running distributed ML models at local SMs without data exchange.
arXiv Detail & Related papers (2024-11-15T22:44:50Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - A Meta-Learning Approach for Multi-Objective Reinforcement Learning in Sustainable Home Environments [2.9845592719739127]
We extend state-of-the-art MORL algorithms with the meta-learning paradigm.
We employ an auto-encoder (AE)-based unsupervised method to detect environment context changes.
This study assesses the application of MORL in residential appliance scheduling and underscores the effectiveness of meta-learning in energy management.
arXiv Detail & Related papers (2024-07-16T08:23:20Z) - Improve Load Forecasting in Energy Communities through Transfer Learning using Open-Access Synthetic Profiles [1.124958340749622]
A 1% reduction in forecast error for a 10 GW energy utility can save up to $ 1.6 million annually.
We propose to pre-train the load prediction models with open-access synthetic load profiles using transfer learning techniques.
arXiv Detail & Related papers (2024-07-11T12:17:31Z) - Impact of data for forecasting on performance of model predictive control in buildings with smart energy storage [0.0]
The impact on forecast accuracy of measures to improve model data efficiency are quantified.
The use of more than 2 years of training data for load prediction models provided no significant improvement in forecast accuracy.
Reused models and those trained with 3 months of data had on average 10% higher error than baseline, indicating that deploying MPC systems without prior data collection may be economic.
arXiv Detail & Related papers (2024-02-19T21:01:11Z) - Reusing Pretrained Models by Multi-linear Operators for Efficient
Training [65.64075958382034]
Training large models from scratch usually costs a substantial amount of resources.
Recent studies such as bert2BERT and LiGO have reused small pretrained models to initialize a large model.
We propose a method that linearly correlates each weight of the target model to all the weights of the pretrained model.
arXiv Detail & Related papers (2023-10-16T06:16:47Z) - FedWOA: A Federated Learning Model that uses the Whale Optimization
Algorithm for Renewable Energy Prediction [0.0]
This paper introduces FedWOA, a novel federated learning model that aggregate global prediction models from the weights of local neural network models trained on prosumer energy data.
The evaluation results on prosumers energy data have shown that FedWOA can effectively enhance the accuracy of energy prediction models accuracy by 25% for MSE and 16% for MAE compared to FedAVG.
arXiv Detail & Related papers (2023-09-19T05:44:18Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - DECODE: Data-driven Energy Consumption Prediction leveraging Historical
Data and Environmental Factors in Buildings [1.2891210250935148]
This paper introduces a Long Short-Term Memory (LSTM) model designed to forecast building energy consumption.
The LSTM model provides accurate short, medium, and long-term energy predictions for residential and commercial buildings.
It demonstrates exceptional prediction accuracy, boasting the highest R2 score of 0.97 and the most favorable mean absolute error (MAE) of 0.007.
arXiv Detail & Related papers (2023-09-06T11:02:53Z) - Meta-Regression Analysis of Errors in Short-Term Electricity Load
Forecasting [0.0]
We present a Meta-Regression Analysis (MRA) that examines factors that influence the accuracy of short-term electricity load forecasts.
We use data from 421 forecast models published in 59 studies.
We found the LSTM approach and a combination of neural networks with other approaches to be the best forecasting methods.
arXiv Detail & Related papers (2023-05-29T18:26:51Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
The field of deep learning has witnessed significant progress, particularly in computer vision (CV), natural language processing (NLP), and speech.
The use of large-scale models trained on vast amounts of data holds immense promise for practical applications.
With the increasing demands on computational capacity, a comprehensive summarization on acceleration techniques of training deep learning models is still much anticipated.
arXiv Detail & Related papers (2023-04-07T11:13:23Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
Currently the UK Electric market is guided by load (demand) forecasts published every thirty minutes by the regulator.
We present HYENA: a hybrid predictive model that combines feature engineering (selection of the candidate predictor features), mobile-window predictors and LSTM encoder-decoders.
arXiv Detail & Related papers (2022-05-20T22:13:25Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Federated Learning for Short-term Residential Energy Demand Forecasting [4.769747792846004]
Energy demand forecasting is an essential task performed within the energy industry to help balance supply with demand and maintain a stable load on the electricity grid.
As supply transitions towards less reliable renewable energy generation, smart meters will prove a vital component to aid these forecasting tasks.
However, smart meter take-up is low among privacy-conscious consumers that fear intrusion upon their fine-grained consumption data.
arXiv Detail & Related papers (2021-05-27T17:33:09Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - FracTrain: Fractionally Squeezing Bit Savings Both Temporally and Spatially for Efficient DNN Training [62.932299614630985]
We propose FracTrain that integrates progressive fractional quantization which gradually increases the precision of activations, weights, and gradients.<n>FracTrain reduces computational cost and hardware-quantified energy/latency of DNN training while achieving a comparable or better (-0.12%+1.87%) accuracy.
arXiv Detail & Related papers (2020-12-24T05:24:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.