論文の概要: Conformal mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs): learning neural networks for designing neutral inclusions
- arxiv url: http://arxiv.org/abs/2501.07809v1
- Date: Tue, 14 Jan 2025 03:20:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:05.086889
- Title: Conformal mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs): learning neural networks for designing neutral inclusions
- Title(参考訳): Conformal Mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs): ニューラルネットを学習して中立包摂を設計する
- Authors: Daehee Cho, Hyeonmin Yun, Jaeyong Lee, Mikyoung Lim,
- Abstract要約: ニューラルネットワークによる中立包摂問題の設計と解決に重点を置いている。
物理インフォームドニューラルネットワーク(CoCo-PINN)のコンフォーマルマッピングという新しいアプローチを導入する。
数学的には、任意の方向に訓練されていない線形場に対する中立性を達成するのに、単一の線形場による訓練が十分であることを示す。
- 参考スコア(独自算出の注目度): 6.854210461853054
- License:
- Abstract: We focus on designing and solving the neutral inclusion problem via neural networks. The neutral inclusion problem has a long history in the theory of composite materials, and it is exceedingly challenging to identify the precise condition that precipitates a general-shaped inclusion into a neutral inclusion. Physics-informed neural networks (PINNs) have recently become a highly successful approach to addressing both forward and inverse problems associated with partial differential equations. We found that traditional PINNs perform inadequately when applied to the inverse problem of designing neutral inclusions with arbitrary shapes. In this study, we introduce a novel approach, Conformal mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs), which integrates complex analysis techniques into PINNs. This method exhibits strong performance in solving forward-inverse problems to construct neutral inclusions of arbitrary shapes in two dimensions, where the imperfect interface condition on the inclusion's boundary is modeled by training neural networks. Notably, we mathematically prove that training with a single linear field is sufficient to achieve neutrality for untrained linear fields in arbitrary directions, given a minor assumption. We demonstrate that CoCo-PINNs offer enhanced performances in terms of credibility, consistency, and stability.
- Abstract(参考訳): ニューラルネットワークによる中立包摂問題の設計と解決に重点を置いている。
中立包含問題には複合材料理論における長い歴史があり、一般形包含物が中包含物に沈み込む正確な条件を特定することは極めて困難である。
物理インフォームドニューラルネットワーク(PINN)は近年、偏微分方程式に関連する前方および逆問題に対処する手法として成功している。
任意の形状で中性包摂を設計する逆問題に適用した場合,従来のPINNは不十分であることがわかった。
本研究では,複雑な解析手法をPINNに統合したコンフォーマルマッピング(Conformal mapping Coordinates Physics-Informed Neural Networks, CoCo-PINNs)を提案する。
本手法は, ニューラルネットワークのトレーニングにより, 介在物境界上の不完全な界面条件をモデル化し, 任意の形状の中立な包有物を構成するために, 前方逆問題の解法において高い性能を示す。
特に,1つの線形場を用いた訓練が任意の方向の非訓練線型場に対する中立性を達成するのに十分であることを数学的に証明する。
我々は,CoCo-PINNが信頼性,一貫性,安定性の面で性能を向上させることを実証した。
関連論文リスト
- A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-17T06:00:18Z) - General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
我々は,Singular Perturbation Differential Equations(SPDE)の解法として,GKPINN(General-Kindred Physics-Informed Neural Network)を提案する。
この手法は, 境界層の事前知識を方程式から利用し, 境界層を近似するPINNを支援する新しいネットワークを確立する。
GKPINNは,確立したPINN法と比較して,2~4桁の誤差を2~4桁に削減し,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2024-08-27T02:03:22Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
中性子拡散方程式は原子炉の解析において重要な役割を果たす。
従来のPINNアプローチでは、完全に接続されたネットワーク(FCN)アーキテクチャを利用することが多い。
R2-PINNは、現在の方法に固有の制限を効果的に克服し、中性子拡散方程式のより正確で堅牢な解を提供する。
論文 参考訳(メタデータ) (2024-06-23T13:49:31Z) - RBF-PINN: Non-Fourier Positional Embedding in Physics-Informed Neural Networks [1.9819034119774483]
特定の状況下で広く使われているFourierベースの特徴マッピングの限界を強調した。
条件付き正定根基関数の使用を提案する。
我々の手法は座標に基づく入力ニューラルネットワークにシームレスに統合できる。
論文 参考訳(メタデータ) (2024-02-13T10:54:43Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
物理インフォームドニューラルネットワーク(PINN)は、与えられた境界値問題の解を見つけることができる。
工学的問題における既存のPINNの性能を高めるために,有限要素法(FEM)からいくつかのアイデアを取り入れた。
論文 参考訳(メタデータ) (2022-06-27T08:18:08Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Fusing the Old with the New: Learning Relative Camera Pose with
Geometry-Guided Uncertainty [91.0564497403256]
本稿では,ネットワークトレーニング中の2つの予測系間の確率的融合を含む新しい枠組みを提案する。
本ネットワークは,異なる対応間の強い相互作用を強制することにより学習を駆動する自己追跡グラフニューラルネットワークを特徴とする。
学習に適したモーションパーマリゼーションを提案し、難易度の高いDeMoNおよびScanNetデータセットで最新のパフォーマンスを達成できることを示します。
論文 参考訳(メタデータ) (2021-04-16T17:59:06Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。