Incorporating Quantum Advantage in Quantum Circuit Generation through Genetic Programming
- URL: http://arxiv.org/abs/2501.09682v1
- Date: Thu, 16 Jan 2025 17:34:34 GMT
- Title: Incorporating Quantum Advantage in Quantum Circuit Generation through Genetic Programming
- Authors: Christoph Stein, Michael Färber,
- Abstract summary: We propose two novel approaches for incorporating quantum advantage metrics into the fitness function of genetic algorithms.
We evaluate our approaches based on the Bernstein-Vazirani Problem and the Unstructured Database Search Problem as test cases.
Our findings suggest that automated quantum circuit design using genetic algorithms that incorporate a measure of quantum advantage is a promising approach to accelerating the development of quantum algorithms.
- Score: 10.573861741540853
- License:
- Abstract: Designing efficient quantum circuits that leverage quantum advantage compared to classical computing has become increasingly critical. Genetic algorithms have shown potential in generating such circuits through artificial evolution. However, integrating quantum advantage into the fitness function of these algorithms remains unexplored. In this paper, we aim to enhance the efficiency of quantum circuit design by proposing two novel approaches for incorporating quantum advantage metrics into the fitness function of genetic algorithms.1 We evaluate our approaches based on the Bernstein-Vazirani Problem and the Unstructured Database Search Problem as test cases. The results demonstrate that our approaches not only improve the convergence speed of the genetic algorithm but also produce circuits comparable to expert-designed solutions. Our findings suggest that automated quantum circuit design using genetic algorithms that incorporate a measure of quantum advantage is a promising approach to accelerating the development of quantum algorithms.
Related papers
- Hybrid quantum-classical approach for combinatorial problems at hadron colliders [7.2572969510173655]
We explore the potential of quantum algorithms to resolve the problems in particle physics experiments.
We consider top quark pair production in the fully hadronic channel at the Large Hadron Collider.
We show that the efficiency for selecting the correct pairing is greatly improved by utilizing quantum algorithms.
arXiv Detail & Related papers (2024-10-29T18:00:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum vs classical genetic algorithms: A numerical comparison shows
faster convergence [0.0]
We show that some quantum variants outperform all classical ones in convergence speed towards a near-to-optimal result.
If this advantage holds for larger systems, quantum genetic algorithms would provide a new tool to address optimization problems with quantum computers.
arXiv Detail & Related papers (2022-07-19T13:07:44Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, quantum resources are limited.
We present a resource-efficient quantum algorithm for bosonic ground and excited state computations.
arXiv Detail & Related papers (2021-02-23T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.