論文の概要: Tensor-Var: Variational Data Assimilation in Tensor Product Feature Space
- arxiv url: http://arxiv.org/abs/2501.13312v1
- Date: Thu, 23 Jan 2025 01:43:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:57:45.316247
- Title: Tensor-Var: Variational Data Assimilation in Tensor Product Feature Space
- Title(参考訳): Tensor-Var:テンソル積特徴空間における変動データ同化
- Authors: Yiming Yang, Xiaoyuan Cheng, Daniel Giles, Sibo Cheng, Yi He, Xiao Xue, Boli Chen, Yukun Hu,
- Abstract要約: 条件付き埋め込み(CME)は,システムダイナミクスと状態観測マッピングを線形演算子として特徴付けることにより,最適化効率を向上する。
提案手法は,元の空間と特徴空間との同化結果の一貫性を理論的に保証する。
カオスシステムとリアルタイム観測による世界天気予報実験により,条件付き埋め込み(CME)は従来の4D-Varベースラインよりも精度が高く,静的3D-Var法に匹敵する効率が得られた。
- 参考スコア(独自算出の注目度): 30.63086465547801
- License:
- Abstract: Variational data assimilation estimates the dynamical system states by minimizing a cost function that fits the numerical models with observational data. The widely used method, four-dimensional variational assimilation (4D-Var), has two primary challenges: (1) computationally demanding for complex nonlinear systems and (2) relying on state-observation mappings, which are often not perfectly known. Deep learning (DL) has been used as a more expressive class of efficient model approximators to address these challenges. However, integrating such models into 4D-Var remains challenging due to their inherent nonlinearities and the lack of theoretical guarantees for consistency in assimilation results. In this paper, we propose \textit{Tensor-Var} to address these challenges using kernel Conditional Mean Embedding (CME). Tensor-Var improves optimization efficiency by characterizing system dynamics and state-observation mappings as linear operators, leading to a convex cost function in the feature space. Furthermore, our method provides a new perspective to incorporate CME into 4D-Var, offering theoretical guarantees of consistent assimilation results between the original and feature spaces. To improve scalability, we propose a method to learn deep features (DFs) using neural networks within the Tensor-Var framework. Experiments on chaotic systems and global weather prediction with real-time observations show that Tensor-Var outperforms conventional and DL hybrid 4D-Var baselines in accuracy while achieving efficiency comparable to the static 3D-Var method.
- Abstract(参考訳): 変動データ同化は、数値モデルと観測データに適合するコスト関数を最小化することにより、力学系の状態を推定する。
広く使われている4次元変分同相法(4D-Var)は、(1)複雑な非線形系に対する計算的要求と(2)完全には知られていない状態-観測写像に依存するという2つの主要な課題を持つ。
ディープラーニング(DL)は、これらの課題に対処するために、より表現力のある効率的なモデル近似器のクラスとして使われてきた。
しかし、そのようなモデルを4D-Varに組み込むことは、その固有の非線形性や同化結果の一貫性に関する理論的保証の欠如により、依然として困難である。
本稿では,カーネル条件付き平均埋め込み(CME)を用いて,これらの課題に対処するために,textit{Tensor-Var}を提案する。
Tensor-Varはシステム力学と状態観測写像を線形作用素として特徴付けることにより最適化効率を向上し、特徴空間における凸コスト関数をもたらす。
さらに,本手法は,CMEを4D-Varに組み込む新たな視点を提供する。
拡張性を向上させるため,我々はTensor-Varフレームワーク内でニューラルネットワークを用いて深い特徴(DF)を学習する手法を提案する。
カオスシステムとリアルタイム観測による世界天気予報実験により, テンソル-Varは, 静的3D-Var法に匹敵する効率を保ちながら, 従来とDLハイブリッド4D-Varのベースラインを精度良く上回っていることがわかった。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
既存の方法は、角度や四元数を用いて空間領域でパラメータ化された3次元回転を学習する。
本稿では,3次元回転回帰のためのWigner-D係数を直接予測する周波数領域アプローチを提案する。
提案手法は, ModelNet10-SO(3) や PASCAL3D+ などのベンチマーク上での最先端結果を実現する。
論文 参考訳(メタデータ) (2024-11-01T12:50:38Z) - Adaptive debiased SGD in high-dimensional GLMs with streaming data [4.704144189806667]
我々は、高次元一般化線形モデルにおいて、オンライン推論に新しいアプローチを導入する。
本手法はシングルパスモードで動作し,時間と空間の複雑さを著しく低減する。
提案手法は,ADL (Approximated Debiased Lasso) と呼ばれ,有界な個人確率条件の必要性を緩和するだけでなく,数値性能も著しく向上することを示した。
論文 参考訳(メタデータ) (2024-05-28T15:36:48Z) - Subsurface Characterization using Ensemble-based Approaches with Deep
Generative Models [2.184775414778289]
逆モデリングは、計算コストとスパースデータセットによる予測精度の低下により、不適切な高次元アプリケーションに限られる。
Wasserstein Geneversarative Adrial Network と Gradient Penalty (WGAN-GP) と Ensemble Smoother を多重データ同化 (ES-MDA) と組み合わせる。
WGAN-GPは低次元の潜伏空間から高次元K場を生成するために訓練され、ES-MDAは利用可能な測定値を同化することにより潜伏変数を更新する。
論文 参考訳(メタデータ) (2023-10-02T01:27:10Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
我々は,低次サロゲートモデルと新しいデータ同化手法を組み合わせたシステムを開発した。
一般化された潜在同化は、低次モデリングによって提供される効率とデータ同化の精度の両方の恩恵を受けることができる。
論文 参考訳(メタデータ) (2022-04-07T15:13:12Z) - Observation Error Covariance Specification in Dynamical Systems for Data
assimilation using Recurrent Neural Networks [0.5330240017302621]
長期記憶(LSTM)リカレントニューラルネットワーク(RNN)に基づくデータ駆動型アプローチを提案する。
提案手法では,事前の誤差分布に関する知識や仮定は不要である。
提案手法を,DI01とD05という2つの最先端共分散チューニングアルゴリズムと比較した。
論文 参考訳(メタデータ) (2021-11-11T20:23:00Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
効率的でスケーラブルな半単純外挿 (SIVI) を提案する。
本手法はSIVIの証拠を低勾配値の厳密な推測にマッピングする。
論文 参考訳(メタデータ) (2021-01-15T11:39:09Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
本稿では、ニューラルネットワークとスケーラブルな最適化アルゴリズムを用いた生存分析のためのフレキシブルモデルを提案する。
提案手法の有効性を,既存の最先端ディープラーニングサバイバル分析モデルと比較した。
論文 参考訳(メタデータ) (2020-08-19T19:11:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。