論文の概要: $k$-SVD with Gradient Descent
- arxiv url: http://arxiv.org/abs/2502.00320v2
- Date: Sat, 11 Oct 2025 23:05:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 22:41:56.074537
- Title: $k$-SVD with Gradient Descent
- Title(参考訳): $k$-SVD with Gradient Descent
- Authors: Yassir Jedra, Devavrat Shah,
- Abstract要約: 任意の階数 $d geq 1$ の行列に対して、$k$-SVD を証明できるような、ステップサイズ選択のための単純で普遍的な規則を持つ勾配退化法を提案する。
我々の収束解析により、勾配法は魅力的な領域を持ち、この領域ではヘロン法のように振る舞う(バビロニア法)。
解析結果から,ネステロフの運動量に基づく加速度法により勾配法を拡張できることが示唆された。
- 参考スコア(独自算出の注目度): 18.260910876411973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of modern compute infrastructure for iterative optimization has led to great interest in developing optimization-based approaches for a scalable computation of $k$-SVD, i.e., the $k\geq 1$ largest singular values and corresponding vectors of a matrix of rank $d \geq 1$. Despite lots of exciting recent works, all prior works fall short in this pursuit. Specifically, the existing results are either for the exact-parameterized (i.e., $k = d$) and over-parameterized (i.e., $k > d$) settings; or only establish local convergence guarantees; or use a step-size that requires problem-instance-specific oracle-provided information. In this work, we complete this pursuit by providing a gradient-descent method with a simple, universal rule for step-size selection (akin to pre-conditioning), that provably finds $k$-SVD for a matrix of any rank $d \geq 1$. We establish that the gradient method with random initialization enjoys global linear convergence for any $k, d \geq 1$. Our convergence analysis reveals that the gradient method has an attractive region, and within this attractive region, the method behaves like Heron's method (a.k.a. the Babylonian method). Our analytic results about the said attractive region imply that the gradient method can be enhanced by means of Nesterov's momentum-based acceleration technique. The resulting improved convergence rates match those of rather complicated methods typically relying on Lanczos iterations or variants thereof. We provide an empirical study to validate the theoretical results.
- Abstract(参考訳): 反復最適化のための現代的な計算インフラの出現は、$k$-SVDのスケーラブルな計算のための最適化ベースのアプローチ、すなわち$k\geq 1$最大の特異値と$d \geq 1$の行列の対応するベクトルの開発に大きな関心を惹きつけた。
最近の多くのエキサイティングな作品にもかかわらず、すべての先行作品がこの追求に不足している。
具体的には、既存の結果は正確なパラメータ化 ($k = d$) とオーバーパラメータ化 ($k > d$) の設定、あるいは局所収束保証のみを確立するか、あるいは問題固有のオラクルが提供する情報を必要とするステップサイズを使用する。
本研究は,任意の階数$d \geq 1$の行列に対して,$k$-SVDを証明可能な,ステップサイズ選択(プレコンディショニング)のための単純で普遍的な規則を備えた勾配退化法を提供することにより,この探索を完成させる。
ランダムな初期化を伴う勾配法は任意の$k, d \geq 1$に対して大域線型収束を楽しむ。
収束解析により、勾配法は魅力的な領域を持ち、この領域ではヘロン法のように振る舞う(バビロニア法)。
この魅力的な領域に関する解析結果は、ネステロフの運動量に基づく加速度法を用いて勾配法を拡張できることを示唆している。
その結果、改善された収束速度は、典型的にはランツォの反復あるいはその変種に依存するかなり複雑な方法のそれと一致する。
理論的結果を検証するための実証的研究を行った。
関連論文リスト
- Generalized Gradient Norm Clipping & Non-Euclidean $(L_0,L_1)$-Smoothness [51.302674884611335]
本研究は、急勾配と条件勾配のアプローチを組み合わせることでノルムクリッピングを一般化するハイブリッド非ユークリッド最適化手法を提案する。
本稿では、ディープラーニングのためのアルゴリズムのインスタンス化について論じ、画像分類と言語モデリングにおけるそれらの特性を実証する。
論文 参考訳(メタデータ) (2025-06-02T17:34:29Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - Implicit Bias and Fast Convergence Rates for Self-attention [26.766649949420746]
本稿では,変圧器の定義機構である自己注意の基本的な最適化原理について考察する。
線形分類におけるデコーダを用いた自己アテンション層における勾配ベースの暗黙バイアスを解析する。
論文 参考訳(メタデータ) (2024-02-08T15:15:09Z) - Modified Step Size for Enhanced Stochastic Gradient Descent: Convergence
and Experiments [0.0]
本稿では,$frac1sqrtttをベースとした変形ステップサイズを改良することにより,勾配降下法(SGD)アルゴリズムの性能向上に新たなアプローチを提案する。
提案されたステップサイズは対数的なステップ項を統合し、最終イテレーションでより小さな値を選択する。
提案手法の有効性について,FashionMNISTとARARを用いて画像分類タスクの数値実験を行った。
論文 参考訳(メタデータ) (2023-09-03T19:21:59Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
本稿では,2段階の適応性を持つオンライン凸最適化手法を提案する。
我々は$mathcalO(log V_T)$, $mathcalO(d log V_T)$, $hatmathcalO(sqrtV_T)$ regret bounds for strong convex, exp-concave and convex loss function。
論文 参考訳(メタデータ) (2023-07-17T09:55:35Z) - Orthogonal Directions Constrained Gradient Method: from non-linear
equality constraints to Stiefel manifold [16.099883128428054]
直交方向制約法(ODCGM)という新しいアルゴリズムを提案する。
ODCGMはベクトル空間へのプロジェクションのみを必要とする。
以上より, ODCGMは, ほぼ最適のオラクル複合体を呈することを示した。
論文 参考訳(メタデータ) (2023-03-16T12:25:53Z) - Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum
Minimization [52.25843977506935]
有限サム構造をもつ$L$-smooth, non-deuction関数に対して, AdaSpider と呼ばれる適応分散法を提案する。
そうすることで、$tildeOleft + st/epsilonコールで$epsilon-stationaryポイントを計算することができます。
論文 参考訳(メタデータ) (2022-11-03T14:41:46Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
O(k log L)$サンプルは振幅に基づく経験損失関数を最小化する任意のベクトルに信号が近いことを保証するのに十分であることを示す。
この結果はスパース位相検索に適応し、基底信号が$s$-sparseおよび$n$-dimensionalである場合、$O(s log n)$サンプルは同様の保証に十分であることを示す。
論文 参考訳(メタデータ) (2021-06-29T12:49:54Z) - Last iterate convergence of SGD for Least-Squares in the Interpolation
regime [19.05750582096579]
基本最小二乗構成におけるノイズレスモデルについて検討する。
最適予測器が完全に入力に適合すると仮定し、$langletheta_*, phi(X) rangle = Y$, ここで$phi(X)$は無限次元の非線型特徴写像を表す。
論文 参考訳(メタデータ) (2021-02-05T14:02:20Z) - Adaptive extra-gradient methods for min-max optimization and games [35.02879452114223]
本稿では,初期の反復で観測された勾配データの幾何を自動的に活用する,minmax最適化アルゴリズムの新たなファミリーを提案する。
この適応機構により,提案手法は問題がスムーズかどうかを自動的に検出する。
滑らかな問題における$mathcalO (1/varepsilon)$反復と、非滑らかな問題における$mathcalO (1/varepsilon)$反復に収束する。
論文 参考訳(メタデータ) (2020-10-22T22:54:54Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
本研究は,ステップサイズの減衰が正確な収束に必要であるという事実と,一定のステップサイズがエラーまでの時間でより速く学習するという事実のバランスをとることを目的とする。
ステップサイズのミニバッチを最初から修正するのではなく,パラメータを適応的に進化させることを提案する。
論文 参考訳(メタデータ) (2020-07-02T16:02:02Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
本稿では,勾配降下(SGD)の軌跡を解析する。
我々はSGDが厳格なステップサイズポリシーのために1ドルでサドルポイント/マニフォールドを避けることを示す。
論文 参考訳(メタデータ) (2020-06-19T14:11:26Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。