論文の概要: Recent Advances of NeuroDiffEq -- An Open-Source Library for Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2502.12177v1
- Date: Fri, 14 Feb 2025 04:32:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:06:32.712520
- Title: Recent Advances of NeuroDiffEq -- An Open-Source Library for Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークのためのオープンソースライブラリNeuroDiffEqの最近の進歩
- Authors: Shuheng Liu, Pavlos Protopapas, David Sondak, Feiyu Chen,
- Abstract要約: NeuroDiffEqは、ニューラルネットワークを利用して微分方程式を解くライブラリである。
NeuroDiffEqは任意の次元の複雑な境界値問題を解くことができ、無限大の境界条件に取り組み、実行時の動的注入の柔軟性を維持することができる。
- 参考スコア(独自算出の注目度): 6.177271244427367
- License:
- Abstract: Solving differential equations is a critical challenge across a host of domains. While many software packages efficiently solve these equations using classical numerical approaches, there has been less effort in developing a library for researchers interested in solving such systems using neural networks. With PyTorch as its backend, NeuroDiffEq is a software library that exploits neural networks to solve differential equations. In this paper, we highlight the latest features of the NeuroDiffEq library since its debut. We show that NeuroDiffEq can solve complex boundary value problems in arbitrary dimensions, tackle boundary conditions at infinity, and maintain flexibility for dynamic injection at runtime.
- Abstract(参考訳): 微分方程式の解法は、多くの領域にまたがる重要な問題である。
多くのソフトウェアパッケージは、古典的な数値的アプローチを用いてこれらの方程式を効率的に解くが、ニューラルネットワークを用いてそのようなシステムを解くことに関心のある研究者のためのライブラリを開発する努力は少ない。
PyTorchをバックエンドとするNeuroDiffEqは、ニューラルネットワークを利用して微分方程式を解くソフトウェアライブラリである。
本稿では,NeuroDiffEqライブラリのデビュー以来の新機能について紹介する。
NeuroDiffEqは任意の次元の複雑な境界値問題を解くことができ、無限大の境界条件に取り組み、実行時の動的注入の柔軟性を維持することができる。
関連論文リスト
- LinSATNet: The Positive Linear Satisfiability Neural Networks [116.65291739666303]
本稿では,ニューラルネットワークに人気の高い正の線形満足度を導入する方法について検討する。
本稿では,古典的なシンクホーンアルゴリズムを拡張し,複数の辺分布の集合を共同で符号化する,最初の微分可能満足層を提案する。
論文 参考訳(メタデータ) (2024-07-18T22:05:21Z) - A physics-informed neural network framework for modeling obstacle-related equations [3.687313790402688]
物理インフォームドニューラルネットワーク(PINN)は、スパースデータとノイズデータに基づいて偏微分方程式を解く魅力的なツールである。
ここでは、PINNを拡張して障害物関連PDEを解くことで、計算上の大きな課題を提示します。
提案したPINNの性能は、正規および不規則な障害物を受ける線形および非線形PDEの複数のシナリオで実証される。
論文 参考訳(メタデータ) (2023-04-07T09:22:28Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - IDRLnet: A Physics-Informed Neural Network Library [9.877979064734802]
物理情報ニューラルネットワーク(英: Physics Informed Neural Network, PINN)は、前方および逆問題の両方を解決するために使用される科学計算フレームワークである。
本稿では,PINNによる問題をモデル化および解決するためのPythonツールボックスであるIDRLnetを紹介する。
論文 参考訳(メタデータ) (2021-07-09T09:18:35Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Stiff Neural Ordinary Differential Equations [0.0]
我々はまず、ロバートソン問題における古典的な硬質ODEシステムにおける神経ODEの学習の課題を示す。
次に,ロバートソン問題と大気汚染問題の厳密なシステムにおける実証実験を行った。
論文 参考訳(メタデータ) (2021-03-29T05:24:56Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks [1.1470070927586016]
本研究では,教師なしニューラルネットワークを用いた微分方程式の解法を開発した。
差分方程式GAN (DEQGAN) と呼ばれる手法は, 平均二乗誤差を桁違いに低減できることを示す。
論文 参考訳(メタデータ) (2020-07-21T23:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。