論文の概要: Quantum Recurrent Neural Networks with Encoder-Decoder for Time-Dependent Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2502.13370v1
- Date: Wed, 19 Feb 2025 02:09:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:00:41.885425
- Title: Quantum Recurrent Neural Networks with Encoder-Decoder for Time-Dependent Partial Differential Equations
- Title(参考訳): 時間依存部分微分方程式のエンコーダデコーダを用いた量子リカレントニューラルネットワーク
- Authors: Yuan Chen, Abdul Khaliq, Khaled M. Furati,
- Abstract要約: 本研究では,エンコーダ・デコーダ・フレームワーク内のリカレントニューラルネットワークについて検討し,Vari Gatedational Circuit UnitsとLong Short-Term Memory Networkを統合した。
我々はハミルトン・ヤコビマン方程式、バーガーズ方程式、グレイ・スコット反応拡散系および3次元ミヒャエル・メンテン反応拡散方程式のアルゴリズムを評価する。
- 参考スコア(独自算出の注目度): 3.9179566873079046
- License:
- Abstract: Nonlinear time-dependent partial differential equations are essential in modeling complex phenomena across diverse fields, yet they pose significant challenges due to their computational complexity, especially in higher dimensions. This study explores Quantum Recurrent Neural Networks within an encoder-decoder framework, integrating Variational Quantum Circuits into Gated Recurrent Units and Long Short-Term Memory networks. Using this architecture, the model efficiently compresses high-dimensional spatiotemporal data into a compact latent space, facilitating more efficient temporal evolution. We evaluate the algorithms on the Hamilton-Jacobi-Bellman equation, Burgers' equation, the Gray-Scott reaction-diffusion system, and the three dimensional Michaelis-Menten reaction-diffusion equation. The results demonstrate the superior performance of the quantum-based algorithms in capturing nonlinear dynamics, handling high-dimensional spaces, and providing stable solutions, highlighting their potential as an innovative tool in solving challenging and complex systems.
- Abstract(参考訳): 非線形時間依存偏微分方程式は、様々な分野にわたる複雑な現象をモデル化するのに必須であるが、計算複雑性、特に高次元において大きな課題を生じさせる。
本研究では,変分量子回路をGated Recurrent UnitsとLong Short-Term Memory Networkに統合し,エンコーダ・デコーダ・フレームワーク内の量子リカレントニューラルネットワークについて検討する。
このアーキテクチャを用いて、モデルは高次元の時空間データをコンパクトな潜在空間に効率的に圧縮し、より効率的な時空間の進化を促進する。
我々は,ハミルトン・ヤコビ・ベルマン方程式,バーガーズ方程式,グレイ・スコット反応拡散系,ミカエル・メンテン反応拡散方程式のアルゴリズムを評価する。
この結果は、非線形力学を捕捉し、高次元空間を扱い、安定した解を提供することにおいて、量子ベースのアルゴリズムの優れた性能を示し、困難で複雑なシステムを解く革新的なツールとしての可能性を強調している。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Smooth and Sparse Latent Dynamics in Operator Learning with Jerk
Regularization [1.621267003497711]
本稿では,圧縮された潜在空間の学習にジャッジ正規化を組み込んだ連続演算子学習フレームワークを提案する。
このフレームワークは、任意の所望の空間的あるいは時間的解像度での推論を可能にする。
この枠組みの有効性は、ナヴィエ・ストークス方程式によって支配される二次元非定常流問題によって証明される。
論文 参考訳(メタデータ) (2024-02-23T22:38:45Z) - Artificial-intelligence-based surrogate solution of dissipative quantum
dynamics: physics-informed reconstruction of the universal propagator [0.0]
本稿では,散逸的量子力学を解く人工知能に基づく代理モデルを提案する。
我々の量子ニューラルプロパゲータは、時間を要するイテレーションを避け、普遍的なスーパーオペレータを提供する。
論文 参考訳(メタデータ) (2024-02-05T07:52:04Z) - Physics-Informed Generator-Encoder Adversarial Networks with Latent
Space Matching for Stochastic Differential Equations [14.999611448900822]
微分方程式における前方・逆・混合問題に対処するために,新しい物理情報ニューラルネットワークのクラスを提案する。
我々のモデルは、ジェネレータとエンコーダの2つのキーコンポーネントで構成され、どちらも勾配降下によって交互に更新される。
従来の手法とは対照的に、より低次元の潜在特徴空間内で機能する間接マッチングを用いる。
論文 参考訳(メタデータ) (2023-11-03T04:29:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm
of spatio-temporal data [4.996878640124385]
大規模・パラメトリック・時空間データに対してメッシュに依存しない低ランクな表現を可能にする,NIF(Neural Implicit Flow)と呼ばれる汎用フレームワークを提案する。
NIFは、2つの修正された多層パーセプトロン(i)ShapeNetで構成されており、これは空間的複雑さ(i)ShapeNetを分離し、表現し、パラメトリック依存関係、時間、センサー測定を含む他の入力測定を考慮に入れている。
パラメトリックサロゲートモデリングにおけるNIFの有用性を実証し、複雑な時空間力学の解釈可能な表現と圧縮を可能にし、多空間時空間の効率的な一般化を実現し、スパースの性能を改善した。
論文 参考訳(メタデータ) (2022-04-07T05:02:58Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
本研究では,時間スケールの異なる範囲にわたる動的システムのフローマップを近似するために,ディープニューラルネットワークの時間ステップ階層を構築した。
結果のモデルは純粋にデータ駆動であり、マルチスケールのダイナミックスの特徴を活用する。
我々は,LSTM,貯水池計算,クロックワークRNNなどの最先端手法に対して,我々のアルゴリズムをベンチマークする。
論文 参考訳(メタデータ) (2020-08-22T07:16:53Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。