論文の概要: PRDP: Progressively Refined Differentiable Physics
- arxiv url: http://arxiv.org/abs/2502.19611v1
- Date: Wed, 26 Feb 2025 22:56:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:47.700872
- Title: PRDP: Progressively Refined Differentiable Physics
- Title(参考訳): PRDP: 進歩的に精製された微分可能物理
- Authors: Kanishk Bhatia, Felix Koehler, Nils Thuerey,
- Abstract要約: ネットワークの完全精度は、完全に収束した解法よりも物理学的にかなり粗いことが示される。
本稿では,完全トレーニング精度に十分な物理精製レベルを同定する手法であるPRDP(Progressively Refined Differentiable Physics)を提案する。
- 参考スコア(独自算出の注目度): 18.076285588021868
- License:
- Abstract: The physics solvers employed for neural network training are primarily iterative, and hence, differentiating through them introduces a severe computational burden as iterations grow large. Inspired by works in bilevel optimization, we show that full accuracy of the network is achievable through physics significantly coarser than fully converged solvers. We propose Progressively Refined Differentiable Physics (PRDP), an approach that identifies the level of physics refinement sufficient for full training accuracy. By beginning with coarse physics, adaptively refining it during training, and stopping refinement at the level adequate for training, it enables significant compute savings without sacrificing network accuracy. Our focus is on differentiating iterative linear solvers for sparsely discretized differential operators, which are fundamental to scientific computing. PRDP is applicable to both unrolled and implicit differentiation. We validate its performance on a variety of learning scenarios involving differentiable physics solvers such as inverse problems, autoregressive neural emulators, and correction-based neural-hybrid solvers. In the challenging example of emulating the Navier-Stokes equations, we reduce training time by 62%.
- Abstract(参考訳): ニューラルネットワークトレーニングに使用される物理ソルバは、主に反復的であり、それを通して微分することで、イテレーションが大きくなるにつれて、厳しい計算負担が発生する。
両レベル最適化の研究から着想を得た結果、ネットワークの完全精度は、完全に収束した解法よりもはるかに粗い物理によって達成可能であることが示された。
本稿では,完全トレーニング精度に十分な物理精製レベルを同定する手法であるPRDP(Progressively Refined Differentiable Physics)を提案する。
粗い物理学から始め、トレーニング中に適応的に精製し、トレーニングに適するレベルで精錬を停止することにより、ネットワークの精度を犠牲にすることなく、かなりの計算節約を可能にする。
我々の焦点は、科学計算の基本となる疎離散化微分作用素に対する反復線形解法を微分することである。
PRDPはアンロールと暗黙の区別の両方に適用できる。
本研究では,逆問題,自己回帰型ニューラルエミュレータ,補正に基づくニューラルハイブリド解法など,様々な物理解法に関する学習シナリオにおいて,その性能を検証した。
Navier-Stokes方程式をエミュレートする難しい例では、トレーニング時間を62%削減する。
関連論文リスト
- Metamizer: a versatile neural optimizer for fast and accurate physics simulations [4.717325308876749]
本稿では,広範囲の物理システムを高精度で反復的に解く,新しいニューラルネットワークであるMetamizerを紹介する。
我々は,メタマイザがディープラーニングに基づくアプローチにおいて,前例のない精度で達成できることを実証した。
以上の結果から,メタミザーは将来の数値解法に大きな影響を与える可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-10T11:54:31Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Half-Inverse Gradients for Physical Deep Learning [25.013244956897832]
異なる物理シミュレータをトレーニングプロセスに統合することは、結果の質を大幅に向上させる。
勾配に基づく解法は、多くの物理過程の固有の性質であるスケールと方向を操作できるため、勾配流に深い影響を与える。
本研究では,この現象に苦しむことのない新しい手法を導出するために,物理・ニューラルネットワーク最適化の特性を解析する。
論文 参考訳(メタデータ) (2022-03-18T19:11:04Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
PasticineLabと呼ばれる新しい微分可能な物理ベンチマークを導入する。
各タスクにおいて、エージェントはマニピュレータを使用して、プラスチックを所望の構成に変形させる。
本稿では,既存の強化学習(RL)手法と勾配に基づく手法について評価する。
論文 参考訳(メタデータ) (2021-04-07T17:59:23Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。