論文の概要: Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks
- arxiv url: http://arxiv.org/abs/2503.00755v1
- Date: Sun, 02 Mar 2025 06:24:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:56.476331
- Title: Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks
- Title(参考訳): Riemann Tensor Neural Networks:物理制約付きネットワークによる保守系学習
- Authors: Anas Jnini, Lorenzo Breschi, Flavio Vella,
- Abstract要約: 微分自由対称テンソル(DFST)は連続体力学において基本的なものである。
本稿では,DFST条件をマシン精度に本質的に満足する新しいニューラルアーキテクチャを提案する。
この研究は、ニューラルPDEサロゲートの誘導バイアスとしてDFSTを使った最初のものである。
- 参考スコア(独自算出の注目度): 1.1879716317856948
- License:
- Abstract: Divergence-free symmetric tensors (DFSTs) are fundamental in continuum mechanics, encoding conservation laws such as mass and momentum conservation. We introduce Riemann Tensor Neural Networks (RTNNs), a novel neural architecture that inherently satisfies the DFST condition to machine precision, providing a strong inductive bias for enforcing these conservation laws. We prove that RTNNs can approximate any sufficiently smooth DFST with arbitrary precision and demonstrate their effectiveness as surrogates for conservative PDEs, achieving improved accuracy across benchmarks. This work is the first to use DFSTs as an inductive bias in neural PDE surrogates and to explicitly enforce the conservation of both mass and momentum within a physics-constrained neural architecture.
- Abstract(参考訳): 分散自由対称テンソル(DFST)は連続体力学の基本であり、質量や運動量保存のような保存則を符号化している。
本稿では,DFST条件をマシン精度に本質的に満足する新しいニューラルネットワークであるRiemann Tensor Neural Networks(RTNNs)を紹介する。
RTNNは任意の精度で十分にスムーズなDFSTを近似でき、その効果を保守型PDEのサロゲートとして証明し、ベンチマーク全体で精度を向上できることを示す。
この研究は、DFSTをニューラルPDEサロゲートの誘導バイアスとして初めて使用し、物理学に制約されたニューラルアーキテクチャにおける質量と運動量の保存を明示的に強制した。
関連論文リスト
- Physics-Informed Regularization for Domain-Agnostic Dynamical System Modeling [41.82469276824927]
本稿では,幅広い力学系に対して高精度なモデリングを実現するフレームワークを提案する。
保守的なシステムのエネルギーを保ちつつ、非保守的で可逆的なシステムの強い誘導バイアスとして機能する。
ニューラル常微分方程式モデルにTRS損失を組み込むことにより、提案モデルであるTREATは様々な物理系において優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-08T21:04:01Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Enhancing Reliability of Neural Networks at the Edge: Inverted
Normalization with Stochastic Affine Transformations [0.22499166814992438]
インメモリコンピューティングアーキテクチャに実装されたBayNNのロバスト性と推論精度を本質的に向上する手法を提案する。
実証的な結果は推論精度の優雅な低下を示し、最大で58.11%の値で改善された。
論文 参考訳(メタデータ) (2024-01-23T00:27:31Z) - Efficient kernel surrogates for neural network-based regression [0.8030359871216615]
ニューラルタンジェントカーネル(NTK)の効率的な近似である共役カーネル(CK)の性能について検討する。
CK性能がNTKよりもわずかに劣っていることを示し、特定の場合において、CK性能が優れていることを示す。
NTKの代わりにCKを使用するための理論的基盤を提供するだけでなく,DNNの精度を安価に向上するためのレシピを提案する。
論文 参考訳(メタデータ) (2023-10-28T06:41:47Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Extended critical regimes of deep neural networks [0.0]
重み付き重みは、微調整パラメータを使わずに、拡張臨界状態の出現を可能にすることを示す。
この拡張クリティカルレジームでは、DNNは層間のリッチで複雑な伝播ダイナミクスを示す。
効率的なニューラルアーキテクチャの設計のための理論的ガイドを提供する。
論文 参考訳(メタデータ) (2022-03-24T10:15:50Z) - Parsimonious neural networks learn interpretable physical laws [77.34726150561087]
本稿では、ニューラルネットワークと進化的最適化を組み合わせたパシモニクスニューラルネットワーク(PNN)を提案し、精度とパシモニクスのバランスをとるモデルを求める。
アプローチのパワーと汎用性は、古典力学のモデルを開発し、基本特性から材料の融解温度を予測することによって実証される。
論文 参考訳(メタデータ) (2020-05-08T16:15:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。