論文の概要: Merging Hazy Sets with m-Schemes: A Geometric Approach to Data Visualization
- arxiv url: http://arxiv.org/abs/2503.01664v1
- Date: Mon, 03 Mar 2025 15:40:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:13:14.339025
- Title: Merging Hazy Sets with m-Schemes: A Geometric Approach to Data Visualization
- Title(参考訳): m-Schemesによるヘイズセットのマージング:データの可視化のための幾何学的アプローチ
- Authors: Lukas Silvester Barth, Hannaneh Fahimi, Parvaneh Joharinad, Jürgen Jost, Janis Keck,
- Abstract要約: 本稿では,密度認識正規化による計量の局所的な調整から生じる異性関数を集約するフレームワークを提案する。
確率的測度におけるtノルムやtノルムと密接に関連する手法のクラスであるm-スキームとしてこれらのアプローチを定式化する。
- 参考スコア(独自算出の注目度): 0.09320657506524149
- License:
- Abstract: Many machine learning algorithms try to visualize high dimensional metric data in 2D in such a way that the essential geometric and topological features of the data are highlighted. In this paper, we introduce a framework for aggregating dissimilarity functions that arise from locally adjusting a metric through density-aware normalization, as employed in the IsUMap method. We formalize these approaches as m-schemes, a class of methods closely related to t-norms and t-conorms in probabilistic metrics, as well as to composition laws in information theory. These m-schemes provide a flexible and theoretically grounded approach to refining distance-based embeddings.
- Abstract(参考訳): 多くの機械学習アルゴリズムは、データの本質的な幾何学的特徴と位相的特徴が強調されるように、2Dで高次元の計量データを視覚化しようとする。
本稿では、IsUMap法で用いられるように、密度認識正規化による計量の局所的な調整から生じる異性関数を集約するフレームワークを提案する。
我々はこれらの手法を,確率的指標におけるtノルムやtノルムと密接に関連する手法のクラスであるm-スキーマとして定式化し,情報理論における法則を構成する。
これらのm-スキームは、距離ベースの埋め込みを精製するフレキシブルで理論的に基礎的なアプローチを提供する。
関連論文リスト
- Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices [6.7523635840772505]
円形および非平坦なデータ分布は、データ科学の様々な領域で広く使われている。
このようなデータの基盤となる幾何学を考慮に入れるための原則的なアプローチは、重要なものである。
この研究は、古典的な機械学習と統計手法をより複雑で構造化されたデータに拡張するための基礎となる。
論文 参考訳(メタデータ) (2025-02-03T16:46:46Z) - (Deep) Generative Geodesics [57.635187092922976]
2つのデータポイント間の類似性を評価するために,新しい測定基準を導入する。
我々の計量は、生成距離と生成測地学の概念的定義に繋がる。
彼らの近似は、穏やかな条件下で真の値に収束することが証明されている。
論文 参考訳(メタデータ) (2024-07-15T21:14:02Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
Fisher-Rao情報幾何学は、ツールを微分幾何学から活用することができる。
楕円分布の枠組みにおけるこれらの幾何学的ツールの実用的利用について述べる。
論文 参考訳(メタデータ) (2023-10-02T09:23:32Z) - Data-driven abstractions via adaptive refinements and a Kantorovich
metric [extended version] [56.94699829208978]
本稿では,動的システムのスマートでスケーラブルな抽象化のための適応的洗練手順を提案する。
最適構造を学ぶために、マルコフ連鎖の間のカントロビッチに着想を得た計量を定義する。
本稿では,従来の線形プログラミング手法よりも計算量が多くなることを示す。
論文 参考訳(メタデータ) (2023-03-30T11:26:40Z) - Intrinsic Dimension for Large-Scale Geometric Learning [0.0]
データセットの次元を決定するための単純なアプローチは、属性の数に基づいています。
より洗練された手法は、より複雑な特徴関数を用いる内在次元(ID)の概念を導出する。
論文 参考訳(メタデータ) (2022-10-11T09:50:50Z) - Geometric Methods for Sampling, Optimisation, Inference and Adaptive
Agents [102.42623636238399]
我々は,サンプリング,最適化,推論,適応的意思決定といった問題に根ざした基本的な幾何学的構造を同定する。
これらの問題を効率的に解くためにこれらの幾何学的構造を利用するアルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-03-20T16:23:17Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLEは、局所的、計量的項と大域的、位相的項の両方で損失関数を最小化し、初期埋め込みを補正する次元推論後処理ステップである。
DIPOLEは、UMAP、t-SNE、Isomapといった一般的な手法よりも多くの一般的なデータセットで優れています。
論文 参考訳(メタデータ) (2021-06-14T17:19:44Z) - Geometric variational inference [0.0]
変分推論 (VI) またはマルコフ・チェイン・モンテカルロ (MCMC) 技術は点推定を超えて用いられる。
本研究は,リーマン幾何学とフィッシャー情報量に基づく幾何学的変分推論(geoVI)を提案する。
変換によって誘導される座標系で表される分布は、特に単純であり、正確な変分近似を可能にする。
論文 参考訳(メタデータ) (2021-05-21T17:18:50Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
本稿では、ユークリッド計量がデータポイント間の類似性のプロキシとなる変分自動エンコーダのフレームワークの拡張を提案する。
我々は、変分オートエンコーダで一般的に使用されるコンパクトな以前のものを、最近発表されたより表現力のある階層型に置き換える。
提案手法は,ビデオ追跡ベンチマークを含む,さまざまなデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-12T09:54:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。