A Semantic-Loss Function Modeling Framework With Task-Oriented Machine Learning Perspectives
- URL: http://arxiv.org/abs/2503.09903v1
- Date: Wed, 12 Mar 2025 23:45:11 GMT
- Title: A Semantic-Loss Function Modeling Framework With Task-Oriented Machine Learning Perspectives
- Authors: Ti Ti Nguyen, Thanh-Dung Le, Vu Nguyen Ha, Hong-fu Chou, Geoffrey Eappen, Duc-Dung Tran, Hung Nguyen-Kha, Prabhu Thiruvasagam, Luis M. Garces-Socarras, Jorge L. Gonzalez-Rios, Juan C. Merlano-Duncan, Symeon Chatzinotas,
- Abstract summary: The performance of data-driven Earth Observation (EO) applications is heavily influenced by the data collection and transmission processes.<n>Adopting the concepts of Semantic Communication (SC) offers a promising solution by prioritizing the transmission of essential data semantics over raw information.<n>This work proposes a novel data-fitting framework to empirically model the semantic loss using real-world EO datasets and domain-specific insights.
- Score: 26.82506860792313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of machine learning (ML) has significantly enhanced the capabilities of Earth Observation (EO) systems by enabling the extraction of actionable insights from complex datasets. However, the performance of data-driven EO applications is heavily influenced by the data collection and transmission processes, where limited satellite bandwidth and latency constraints can hinder the full transmission of original data to the receivers. To address this issue, adopting the concepts of Semantic Communication (SC) offers a promising solution by prioritizing the transmission of essential data semantics over raw information. Implementing SC for EO systems requires a thorough understanding of the impact of data processing and communication channel conditions on semantic loss at the processing center. This work proposes a novel data-fitting framework to empirically model the semantic loss using real-world EO datasets and domain-specific insights. The framework quantifies two primary types of semantic loss: (1) source coding loss, assessed via a data quality indicator measuring the impact of processing on raw source data, and (2) transmission loss, evaluated by comparing practical transmission performance against the Shannon limit. Semantic losses are estimated by evaluating the accuracy of EO applications using four task-oriented ML models, EfficientViT, MobileViT, ResNet50-DINO, and ResNet8-KD, on lossy image datasets under varying channel conditions and compression ratios. These results underpin a framework for efficient semantic-loss modeling in bandwidth-constrained EO scenarios, enabling more reliable and effective operations.
Related papers
- Diffusion-based Task-oriented Semantic Communications with Model Inversion Attack [6.115539523178243]
Task-oriented semantic communication is a promising neural network-based system design for 6G networks.<n>We propose a diffusion-based semantic communication framework, named DiffSem, to optimize semantic information reconstruction.<n>Our results show that DiffSem improves the classification accuracy by 10.03%, and maintain stable performance under dynamic channels.
arXiv Detail & Related papers (2025-06-24T05:21:27Z) - Lightweight Task-Oriented Semantic Communication Empowered by Large-Scale AI Models [66.57755931421285]
Large-scale artificial intelligence (LAI) models pose significant challenges for real-time communication scenarios.<n>This paper proposes utilizing knowledge distillation (KD) techniques to extract and condense knowledge from LAI models.<n>We propose a fast distillation method featuring a pre-stored compression mechanism that eliminates the need for repetitive inference.
arXiv Detail & Related papers (2025-06-16T08:42:16Z) - Latent Factorization of Tensors with Threshold Distance Weighted Loss for Traffic Data Estimation [4.079031335530995]
In real-word traffic data collection processes, issues such as communication failures often lead to incomplete or corrupted datasets.<n>Latent factorization of outliers (LFT) model has emerged as widely adopted and effective solution.<n>This paper proposes a threshold distance weighted (TDW) loss sensitivity-ind Latent Factorization of outliers (TDFTWL) model.<n>The proposed TDFTWL model consistently outperforms state-of-the-art approaches in terms of both accuracy and computational efficiency.
arXiv Detail & Related papers (2025-06-11T05:36:13Z) - Distributionally Robust Wireless Semantic Communication with Large AI Models [120.29419104482793]
6G wireless systems are expected to support massive volumes of data with ultra-low latency.<n> conventional bit-level transmission strategies cannot support the efficiency and adaptability required by modern, data-intensive applications.<n>The concept of semantic communication (SemCom) addresses this limitation by focusing on transmitting task-relevant semantic information instead of raw data.
arXiv Detail & Related papers (2025-05-28T04:03:57Z) - Task-Oriented Low-Label Semantic Communication With Self-Supervised Learning [67.06363342414397]
Task-oriented semantic communication enhances transmission efficiency by conveying semantic information rather than exact messages.<n>Deep learning (DL)-based semantic communication can effectively cultivate the essential semantic knowledge for semantic extraction, transmission, and interpretation.<n>We propose a self-supervised learning-based semantic communication framework (SLSCom) to enhance task inference performance.
arXiv Detail & Related papers (2025-05-26T13:06:18Z) - VAE-based Feature Disentanglement for Data Augmentation and Compression in Generalized GNSS Interference Classification [42.14439854721613]
We propose variational autoencoders (VAEs) for disentanglement to extract essential latent features that enable accurate classification of interferences.
Our proposed VAE achieves a data compression rate ranging from 512 to 8,192 and achieves an accuracy up to 99.92%.
arXiv Detail & Related papers (2025-04-14T13:38:00Z) - Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC) presents the challenge of classifying remote sensing images with limited labeled samples.
We propose a novel Optimal Transport Adapter Tuning (OTAT) framework aimed at constructing an ideal Platonic representational space.
arXiv Detail & Related papers (2025-03-19T07:04:24Z) - Enhancing Scene Classification in Cloudy Image Scenarios: A Collaborative Transfer Method with Information Regulation Mechanism using Optical Cloud-Covered and SAR Remote Sensing Images [6.35948253619752]
This study presents a scene classification transfer method that combines multi-modality data.<n>It aims to transfer the source domain model trained on cloudfree optical data to the target domain that includes both cloudy optical and SAR data at low cost.
arXiv Detail & Related papers (2025-01-08T05:14:36Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
This article highlights a significant shift towards leveraging quantum computing techniques in processing large volumes of remote sensing data.
The proposed Quanv4EO model introduces a quanvolution method for preprocessing multi-dimensional EO data.
Key findings suggest that the proposed model not only maintains high precision in image classification but also shows improvements of around 5% in EO use cases.
arXiv Detail & Related papers (2024-07-24T09:11:34Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
This paper develops a latent diffusion model-enabled SemCom system to handle outliers in source data.<n>A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter.<n>An end-to-end consistency distillation strategy is used to distill the diffusion models trained in latent space.
arXiv Detail & Related papers (2024-06-09T23:39:31Z) - Tackling Distribution Shifts in Task-Oriented Communication with Information Bottleneck [28.661084093544684]
We propose a novel approach based on the information bottleneck (IB) principle and invariant risk minimization (IRM) framework.
The proposed method aims to extract compact and informative features that possess high capability for effective domain-shift generalization.
We show that the proposed scheme outperforms state-of-the-art approaches and achieves a better rate-distortion tradeoff.
arXiv Detail & Related papers (2024-05-15T17:07:55Z) - You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment [45.62136459502005]
We propose a network to perform full reference (FR) and no reference (NR) IQA.
We first employ an encoder to extract multi-level features from input images.
A Hierarchical Attention (HA) module is proposed as a universal adapter for both FR and NR inputs.
A Semantic Distortion Aware (SDA) module is proposed to examine feature correlations between shallow and deep layers of the encoder.
arXiv Detail & Related papers (2023-10-14T11:03:04Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Probing transfer learning with a model of synthetic correlated datasets [11.53207294639557]
Transfer learning can significantly improve the sample efficiency of neural networks.
We re-think a solvable model of synthetic data as a framework for modeling correlation between data-sets.
We show that our model can capture a range of salient features of transfer learning with real data.
arXiv Detail & Related papers (2021-06-09T22:15:41Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.