論文の概要: Laplace-Net: Learning Dynamical Systems with External Forcing
- arxiv url: http://arxiv.org/abs/2503.13158v1
- Date: Mon, 17 Mar 2025 13:31:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:58:40.578050
- Title: Laplace-Net: Learning Dynamical Systems with External Forcing
- Title(参考訳): Laplace-Net: 外部力による動的システム学習
- Authors: Bernd Zimmering, Cecília Coelho, Vaibhav Gupta, Maria Maleshkova, Oliver Niggemann,
- Abstract要約: ラプラスネット(Laplace-Net)は、強制学習と遅延認識システムのための、分離された、解けないニューラルネットワークフレームワークである。
Laplace-Netは、新しい強制信号に対して、システムが迅速に再訓練または微調整されるため、転送可能性を促進する。
- 参考スコア(独自算出の注目度): 3.7167786210391207
- License:
- Abstract: Modelling forced dynamical systems - where an external input drives the system state - is critical across diverse domains such as engineering, finance, and the natural sciences. In this work, we propose Laplace-Net, a decoupled, solver-free neural framework for learning forced and delay-aware systems. It leverages a Laplace transform-based approach to decompose internal dynamics, external inputs, and initial values into established theoretical concepts, enhancing interpretability. Laplace-Net promotes transferability since the system can be rapidly re-trained or fine-tuned for new forcing signals, providing flexibility in applications ranging from controller adaptation to long-horizon forecasting. Experimental results on eight benchmark datasets - including linear, non-linear, and delayed systems - demonstrate the method's improved accuracy and robustness compared to state-of-the-art approaches, particularly in handling complex and previously unseen inputs.
- Abstract(参考訳): 強制力学系のモデリング - 外部入力がシステム状態を駆動する - は、工学、金融、自然科学といった様々な分野において重要である。
そこで本研究では,強制学習と遅延認識システムのための切り離された,解決不能なニューラルネットワークフレームワークであるLaplace-Netを提案する。
これはラプラス変換に基づくアプローチを利用して、内部力学、外部入力、初期値を確立された理論概念に分解し、解釈可能性を高める。
Laplace-Netは、新しい強制信号のためにシステムが迅速に再訓練または微調整されるため、転送可能性を促進し、コントローラ適応から長距離予測まで幅広いアプリケーションに柔軟性を提供する。
線形系、非線形系、遅延系を含む8つのベンチマークデータセットの実験結果は、特に複雑で以前は目に見えない入力を扱う場合において、最先端のアプローチに比べて精度と堅牢性が改善されたことを示す。
関連論文リスト
- LeARN: Learnable and Adaptive Representations for Nonlinear Dynamics in System Identification [0.0]
非線形システム識別フレームワークLeARNを導入する。
基礎関数のライブラリをデータから直接学習することで、事前のドメイン知識の必要性を超越します。
我々はNeural Flyデータセットのフレームワークを検証し、その堅牢な適応と能力を示す。
論文 参考訳(メタデータ) (2024-12-16T18:03:23Z) - Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of
spatio-temporal processes [2.3694122563610924]
ラテント・ダイナミクス・ネットワーク(LDNet)は、非マルコフ力学系の低次元固有力学を発見できる。
LDNetは軽量で訓練が容易で、時間外挿方式でも精度と一般化性に優れている。
論文 参考訳(メタデータ) (2023-04-28T21:11:13Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Learning Deep Input-Output Stable Dynamics [2.055949720959582]
入力出力安定性を保証する非線形系を学習する手法を提案する。
提案手法はハミルトン-ヤコビ不等式を満たす空間への微分可能射影を利用する。
その結果,ニューラルネットワークを用いた非線形システムは,ニューラルネットとは違って入力出力安定性を実現することがわかった。
論文 参考訳(メタデータ) (2022-06-27T07:54:34Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Neural Networks with Physics-Informed Architectures and Constraints for
Dynamical Systems Modeling [19.399031618628864]
軌道データから動的モデルを学ぶためのフレームワークを開発する。
出力の値とモデルの内部状態に制約を課す。
様々な力学系に対する提案手法の利点を実験的に実証した。
論文 参考訳(メタデータ) (2021-09-14T02:47:51Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。