論文の概要: Bézier Splatting for Fast and Differentiable Vector Graphics
- arxiv url: http://arxiv.org/abs/2503.16424v2
- Date: Tue, 25 Mar 2025 22:33:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 09:39:28.357106
- Title: Bézier Splatting for Fast and Differentiable Vector Graphics
- Title(参考訳): 高速かつ微分可能なベクトルグラフのためのベジエ散乱
- Authors: Xi Liu, Chaoyi Zhou, Nanxuan Zhao, Siyu Huang,
- Abstract要約: 微分ベクトルグラフィックス(VG)は画像ベクトル化やベクトル合成に広く用いられている。
この研究は、高忠実度VG化を可能にするB'ezier splattingと呼ばれる新しい微分可能なVG表現を導入している。
B'ezier splatting は、DiffVG と比較して、前方および後方の曲線に対して、20倍から150倍の速さで達成される。
- 参考スコア(独自算出の注目度): 21.771485324963606
- License:
- Abstract: Differentiable vector graphics (VGs) are widely used in image vectorization and vector synthesis, while existing representations are costly to optimize and struggle to achieve high-quality rendering results for high-resolution images. This work introduces a new differentiable VG representation, dubbed B\'ezier splatting, that enables fast yet high-fidelity VG rasterization. B\'ezier splatting samples 2D Gaussians along B\'ezier curves, which naturally provide positional gradients at object boundaries. Thanks to the efficient splatting-based differentiable rasterizer, B\'ezier splatting achieves over 20x and 150x faster per forward and backward rasterization step for open curves compared to DiffVG. Additionally, we introduce an adaptive pruning and densification strategy that dynamically adjusts the spatial distribution of curves to escape local minima, further improving VG quality. Experimental results show that B\'ezier splatting significantly outperforms existing methods with better visual fidelity and 10x faster optimization speed.
- Abstract(参考訳): 微分ベクトルグラフィックス(VG)は画像ベクトル化やベクトル合成において広く用いられているが、既存の表現は高解像度画像の高画質レンダリング結果の最適化と解決に費用がかかる。
この研究はB\'ezier splattingと呼ばれる新しい微分可能なVG表現を導入し、高速かつ高忠実なVGラスタ化を可能にした。
B\'ezier splatting sample 2D Gaussian along B\'ezier curve, which is natural provide positional gradients at object boundary。
効率的なスプレイティングベースの微分可能ラスタライザにより、B'ezierスプレイティングはDiffVGと比較して、前方および後方でのラスタライズステップで20倍から150倍の速度で達成できる。
さらに,局所最小値から逃れるために曲線の空間分布を動的に調整し,VG品質を向上する適応型プルーニング・デンシフィケーション戦略を導入する。
実験結果から,B\'ezierスプラッティングは視覚的忠実度が向上し,最適化速度が10倍に向上した。
関連論文リスト
- Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives [60.217580865237835]
3D Gaussian Splatting (3D-GS)は、3D Gaussian のパラメトリック点雲としてシーンをモデル化することで、新しいビューをリアルタイムにレンダリングすることのできる最近の3Dシーン再構築技術である。
3D-GSでは,レンダリング速度,モデルサイズ,トレーニング時間の大幅な改善を実現し,2つの重要な非効率性に対処する。
我々のSpeedy-Splatアプローチはこれらのテクニックを組み合わせることで、Mip-NeRF 360、Tamps & Temples、Deep Blendingのデータセットから、平均レンダリング速度を6.71ドル(約6万6000円)で加速します。
論文 参考訳(メタデータ) (2024-11-30T20:25:56Z) - 3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt [65.25603275491544]
3DGS-LM, 3D Gaussian Splatting(3DGS)の再構築を高速化する新しい手法を提案する。
提案手法は元の3DGSよりも30%高速で, 再現品質の最適化が可能である。
論文 参考訳(メタデータ) (2024-09-19T16:31:44Z) - FlashSplat: 2D to 3D Gaussian Splatting Segmentation Solved Optimally [66.28517576128381]
本研究は,2次元マスクから3次元ガウススプラッティングを正確に分割することの課題に対処する。
3D-GSセグメンテーションのための単純かつグローバルな最適解法を提案する。
私たちのメソッドは30秒以内で完了します。
論文 参考訳(メタデータ) (2024-09-12T17:58:13Z) - Mipmap-GS: Let Gaussians Deform with Scale-specific Mipmap for Anti-aliasing Rendering [81.88246351984908]
任意のスケールでガウスを適応させる統一最適化法を提案する。
ミップマップ技術に触発されて、ターゲットスケールのための擬似基底構造を設計し、3次元ガウスアンにスケール情報を注入するスケール一貫性誘導損失を提案する。
本手法は,PSNRの3DGSを,ズームインで平均9.25dB,ズームアウトで平均10.40dBで上回っている。
論文 参考訳(メタデータ) (2024-08-12T16:49:22Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
VastGaussianは3次元ガウススティングに基づく大規模シーンにおける高品質な再構成とリアルタイムレンダリングのための最初の方法である。
提案手法は既存のNeRF手法より優れており,複数の大規模シーンデータセットの最先端結果が得られる。
論文 参考訳(メタデータ) (2024-02-27T11:40:50Z) - StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering [42.91830228828405]
本稿では,処理オーバーヘッドを最小限に抑えた新しい階層化手法を提案する。
提案手法はガウス版よりも平均で4%遅い。
レンダリング性能はほぼ2倍に向上し,従来のガウス版よりも1.6倍高速になった。
論文 参考訳(メタデータ) (2024-02-01T11:46:44Z) - Variance-reduced Clipping for Non-convex Optimization [24.765794811146144]
グラディエント・クリッピング(Gradient clipping)は、大規模言語モデリングのようなディープラーニングアプリケーションで用いられる技法である。
最近の実験的な訓練は、秩序の複雑さを緩和する、非常に特別な振る舞いを持っている。
論文 参考訳(メタデータ) (2023-03-02T00:57:38Z) - AdaDGS: An adaptive black-box optimization method with a nonlocal
directional Gaussian smoothing gradient [3.1546318469750196]
方向性ガウススムースティング(DGS)アプローチは(Zhang et al., 2020)で最近提案され、高次元ブラックボックス最適化のためにDGS勾配と呼ばれる真の非局所勾配を定義するために使用された。
DGSグラデーションを用いた簡易かつ創発的かつ効率的な最適化手法を提案し,超パラメータ微調整の必要性を排除した。
論文 参考訳(メタデータ) (2020-11-03T21:20:25Z) - Sliced Iterative Normalizing Flows [7.6146285961466]
我々は,任意の確率分布関数(PDF)を対象のPDFに変換することができる反復型(欲求型)ディープラーニング(DL)アルゴリズムを開発した。
本アルゴリズムの特殊な場合として,データから潜在空間(GIS)にマップする2つの反復正規化フロー(SINF)モデルを導入する。
論文 参考訳(メタデータ) (2020-07-01T18:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。