論文の概要: GauRast: Enhancing GPU Triangle Rasterizers to Accelerate 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2503.16681v1
- Date: Thu, 20 Mar 2025 19:54:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:55:29.126392
- Title: GauRast: Enhancing GPU Triangle Rasterizers to Accelerate 3D Gaussian Splatting
- Title(参考訳): GauRast:GPUトライアングルラスタライザの強化による3Dガウススプレイティングの高速化
- Authors: Sixu Li, Ben Keller, Yingyan Celine Lin, Brucek Khailany,
- Abstract要約: 3D Gaussian Splatting (3DGS)は高品質な3Dレンダリング手法である。
3DGSを加速するためのこれまでの取り組みは、相当な統合オーバーヘッドとハードウェアコストを必要とする専用のアクセラレータに依存していた。
本研究では、3DGSパイプラインと高度に最適化された従来のグラフィックスパイプラインの類似性を活用する加速度戦略を提案する。
- 参考スコア(独自算出の注目度): 3.275890592583965
- License:
- Abstract: 3D intelligence leverages rich 3D features and stands as a promising frontier in AI, with 3D rendering fundamental to many downstream applications. 3D Gaussian Splatting (3DGS), an emerging high-quality 3D rendering method, requires significant computation, making real-time execution on existing GPU-equipped edge devices infeasible. Previous efforts to accelerate 3DGS rely on dedicated accelerators that require substantial integration overhead and hardware costs. This work proposes an acceleration strategy that leverages the similarities between the 3DGS pipeline and the highly optimized conventional graphics pipeline in modern GPUs. Instead of developing a dedicated accelerator, we enhance existing GPU rasterizer hardware to efficiently support 3DGS operations. Our results demonstrate a 23$\times$ increase in processing speed and a 24$\times$ reduction in energy consumption, with improvements yielding 6$\times$ faster end-to-end runtime for the original 3DGS algorithm and 4$\times$ for the latest efficiency-improved pipeline, achieving 24 FPS and 46 FPS respectively. These enhancements incur only a minimal area overhead of 0.2\% relative to the entire SoC chip area, underscoring the practicality and efficiency of our approach for enabling 3DGS rendering on resource-constrained platforms.
- Abstract(参考訳): 3Dインテリジェンスは、リッチな3D機能を活用し、多くのダウンストリームアプリケーションに基本的な3Dレンダリングを備えた、AIの有望なフロンティアとして機能する。
新たな高品質な3Dレンダリング手法である3D Gaussian Splatting (3DGS)は,GPU搭載エッジデバイス上でのリアルタイム実行を実現するために,大幅な計算を必要とする。
3DGSを加速するためのこれまでの取り組みは、相当な統合オーバーヘッドとハードウェアコストを必要とする専用のアクセラレータに依存していた。
本研究は,3DGSパイプラインと最近のGPUにおいて,高度に最適化された従来のグラフィックスパイプラインの類似性を活用する加速戦略を提案する。
専用アクセラレータを開発する代わりに、既存のGPUラスタライザハードウェアを拡張して、3DGS操作を効率的にサポートする。
その結果,処理速度の23$\times$増加とエネルギー消費の24$\times$減少が示され,元の3DGSアルゴリズムでは6$\times$高速エンド・ツー・エンド・ランタイム,最新の効率改善パイプラインでは4$\times$がそれぞれ24FPS,46FPSが得られた。
これらの拡張は、リソース制約のあるプラットフォーム上で3DGSレンダリングを実現するためのアプローチの実践性と効率を裏付けるものとして、SoCチップ領域全体に対して0.2\%の最小領域のオーバーヘッドしか発生しない。
関連論文リスト
- Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives [60.217580865237835]
3D Gaussian Splatting (3D-GS)は、3D Gaussian のパラメトリック点雲としてシーンをモデル化することで、新しいビューをリアルタイムにレンダリングすることのできる最近の3Dシーン再構築技術である。
3D-GSでは,レンダリング速度,モデルサイズ,トレーニング時間の大幅な改善を実現し,2つの重要な非効率性に対処する。
我々のSpeedy-Splatアプローチはこれらのテクニックを組み合わせることで、Mip-NeRF 360、Tamps & Temples、Deep Blendingのデータセットから、平均レンダリング速度を6.71ドル(約6万6000円)で加速します。
論文 参考訳(メタデータ) (2024-11-30T20:25:56Z) - 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
多視点画像から幾何学的に有意な放射場をモデル化するためのプリミティブとして3次元滑らかな凸を利用した3次元凸法(3DCS)を提案する。
3DCSは、MipNeizer, Tanks and Temples, Deep Blendingなどのベンチマークで、3DGSよりも優れたパフォーマンスを実現している。
本結果は,高品質なシーン再構築のための新しい標準となる3Dコンベクシングの可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T14:31:39Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - 3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt [65.25603275491544]
3DGS-LM, 3D Gaussian Splatting(3DGS)の再構築を高速化する新しい手法を提案する。
提案手法は元の3DGSよりも30%高速で, 再現品質の最適化が可能である。
論文 参考訳(メタデータ) (2024-09-19T16:31:44Z) - Multi-GPU RI-HF Energies and Analytic Gradients $-$ Towards High Throughput Ab Initio Molecular Dynamics [0.0]
本稿では,複数グラフィクス処理ユニット(GPU)を用いた高次ハートリー・フォックエネルギーと解析勾配の解法を最適化したアルゴリズムと実装を提案する。
このアルゴリズムは特に、中小分子(10-100原子)の高スループット初期分子動力学シミュレーションのために設計されている。
論文 参考訳(メタデータ) (2024-07-29T00:14:10Z) - 3D-HGS: 3D Half-Gaussian Splatting [5.766096863155448]
シーン3D再構成による写真リアル画像のレンダリングは、3Dコンピュータビジョンの基本的な問題である。
本稿では,プラグイン・アンド・プレイカーネルとして使用できる3Dハーフ・ガウスカーネルを紹介する。
論文 参考訳(メタデータ) (2024-06-04T19:04:29Z) - Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting [2.878831747437321]
3D-GSは、速度と画質の両方においてニューラル放射場(NeRF)を上回った新しいレンダリングアプローチである。
本研究では,現在のビューをレンダリングするために,不要な3次元ガウスをリアルタイムに識別する計算量削減手法を提案する。
Mip-NeRF360データセットの場合、提案手法は2次元画像投影の前に平均して3次元ガウスの63%を排除し、ピーク信号対雑音比(PSNR)を犠牲にすることなく全体のレンダリングを約38.3%削減する。
提案されたアクセラレータは、GPUと比較して10.7倍のスピードアップも達成している。
論文 参考訳(メタデータ) (2024-02-21T14:16:49Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3Dガウススプラッティングは、新しいビュー合成のための代替の3D表現として登場した。
SAGDは3D-GSのための概念的にシンプルで効果的な境界拡張パイプラインである。
提案手法は粗い境界問題なく高品質な3Dセグメンテーションを実現し,他のシーン編集作業にも容易に適用できる。
論文 参考訳(メタデータ) (2024-01-31T14:19:03Z) - 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering [103.32717396287751]
本研究では,動的シーンの全体像として4D-GS(Gaussian Splatting)を提案する。
HexPlaneにインスパイアされたニューラルボクセル符号化アルゴリズムは、4Dニューラルボクセルの機能を効率的に構築するために提案されている。
我々の4D-GS法は、高解像度の82 FPSで、3090 GPUで800$times$800の解像度でリアルタイムレンダリングを実現する。
論文 参考訳(メタデータ) (2023-10-12T17:21:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。