論文の概要: Universal approximation property of neural stochastic differential equations
- arxiv url: http://arxiv.org/abs/2503.16696v1
- Date: Thu, 20 Mar 2025 20:34:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:57:37.180078
- Title: Universal approximation property of neural stochastic differential equations
- Title(参考訳): ニューラル確率微分方程式の普遍近似特性
- Authors: Anna P. Kwossek, David J. Prömel, Josef Teichmann,
- Abstract要約: 局所的に一様に固定された大域的線形成長制約を受ける連続関数を近似できるニューラルネットワークの様々なクラスを同定する。
そのようなニューラルネットワークに対して、関連するニューラルネットワーク微分方程式は、伊藤拡散型の一般微分方程式を任意に近似することができる。
- 参考スコア(独自算出の注目度): 2.6490401904186758
- License:
- Abstract: We identify various classes of neural networks that are able to approximate continuous functions locally uniformly subject to fixed global linear growth constraints. For such neural networks the associated neural stochastic differential equations can approximate general stochastic differential equations, both of It\^o diffusion type, arbitrarily well. Moreover, quantitative error estimates are derived for stochastic differential equations with sufficiently regular coefficients.
- Abstract(参考訳): 局所的に一様に固定された大域的線形成長制約を受ける連続関数を近似できるニューラルネットワークの様々なクラスを同定する。
そのようなニューラルネットワークに対して、関連する神経確率微分方程式は、一般確率微分方程式を近似することができる。
さらに、十分な正則係数を持つ確率微分方程式に対して、定量的な誤差推定が導出される。
関連論文リスト
- Generalizing Stochastic Smoothing for Differentiation and Gradient Estimation [59.86921150579892]
アルゴリズム,演算子,シミュレータ,その他の微分不可能関数の微分可能緩和に対する勾配推定の問題に対処する。
我々は、微分可能なソートとランキングのための分散化戦略、グラフ上の微分可能なショートパス、ポーズ推定のための微分可能なレンダリング、および微分可能なCryo-ETシミュレーションを開発する。
論文 参考訳(メタデータ) (2024-10-10T17:10:00Z) - Modify Training Directions in Function Space to Reduce Generalization
Error [9.821059922409091]
本稿では,ニューラルネットワーク関数空間におけるニューラルタンジェントカーネルとフィッシャー情報行列の固有分解に基づく自然勾配降下法を提案する。
固有分解と統計理論から理論的手法を用いて学習したニューラルネットワーク関数の一般化誤差を明示的に導出する。
論文 参考訳(メタデータ) (2023-07-25T07:11:30Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Neuro-symbolic partial differential equation solver [0.0]
本稿では,科学計算における数値離散化からメッシュフリーなニューロシンボリック偏微分方程式解法を開発するための戦略を提案する。
この戦略は、解関数と微分演算子のモデルのニューラルネットワークサロゲートモデルを効率的に訓練するために使用できるという点でユニークなものである。
論文 参考訳(メタデータ) (2022-10-25T22:56:43Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Infinitely Deep Bayesian Neural Networks with Stochastic Differential
Equations [37.02511585732081]
我々は,最近提案された連続深度ニューラルネットワークのファミリーにおいて,スケーラブルな近似推論を行う。
我々は勾配に基づく変分推論を示し、任意フレキシブルな近似後部を生成する。
このアプローチは、さらにメモリ効率の高いトレーニングとニューラルODEのチューナブルな精度を継承する。
論文 参考訳(メタデータ) (2021-02-12T14:48:58Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Learning To Solve Differential Equations Across Initial Conditions [12.66964917876272]
多くのニューラルネットワークに基づく偏微分方程式解法が定式化され、古典的解法よりも性能が同等であり、場合によってはさらに優れている。
本研究では,任意の初期条件に対する偏微分方程式の解を条件付き確率分布の学習として近似する問題を提案する。
論文 参考訳(メタデータ) (2020-03-26T21:29:22Z) - Neural network representation of the probability density function of
diffusion processes [0.0]
物理インフォームドニューラルネットワークは、ランダム環境における力学系の状態を特徴付けるために開発された。
解析的,数値的に各微分方程式を解くことの利点と欠点を解析的に検討し,その状態を特徴づける。
論文 参考訳(メタデータ) (2020-01-15T17:15:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。