論文の概要: Encoding quantum-like information in classical synchronizing dynamics
- arxiv url: http://arxiv.org/abs/2504.03852v1
- Date: Fri, 04 Apr 2025 18:28:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 07:52:35.84607
- Title: Encoding quantum-like information in classical synchronizing dynamics
- Title(参考訳): 古典的同期力学における量子様情報の符号化
- Authors: Graziano Amati, Gregory D. Scholes,
- Abstract要約: 古典的同期力学から量子様絡み合い状態がどのように出現するかを考察する。
我々は,多体系を同期させる特別なクラスに対して,その答えが肯定的であることを証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In previous work, we introduced a formalism that maps classical networks of nonlinear oscillators onto a quantum-like Hilbert space. We demonstrated that specific network transformations correspond to quantum gates, underscoring the potential of classical many-body systems as platforms for quantum-inspired information processing. In this paper, we extend this framework by systematically identifying the classical dynamics best suited for this purpose. Specifically, we address the question: Can the collective steady state of a classical network encode signatures of quantum information? We prove that the answer is affirmative for a special class of synchronizing many-body systems, namely, a complex-field extension of the Kuramoto model of nonlinearly coupled classical oscillators. Through this approach, we investigate how quantum-like entangled states can emerge from classical synchronization dynamics.
- Abstract(参考訳): これまでの研究で、非線形発振器の古典的ネットワークを量子的ヒルベルト空間にマッピングする形式論を導入した。
我々は、量子ゲートに対応する特定のネットワーク変換を実証し、量子にインスパイアされた情報処理のプラットフォームとして、古典的な多体システムの可能性を強調した。
本稿では,この目的に最適な古典力学を体系的に同定することによって,この枠組みを拡張した。
古典的ネットワークの集合的定常状態は、量子情報のシグネチャをエンコードできるだろうか?
非線形結合型古典振動子の倉本モデルの複素場拡張という,多体系を同期させる特別なクラスに対して,その解が肯定的であることを証明した。
このアプローチを通じて、古典的同期力学から量子様絡み合い状態がどのように出現するかを考察する。
関連論文リスト
- Operationally classical simulation of quantum states [41.94295877935867]
古典的な状態準備装置は重ね合わせを発生できないため、出力された状態は通勤しなければならない。
このようなシミュレーションは存在しないことを示し、量子コヒーレンスを証明している。
我々のアプローチは、量子状態がいかにして、いかにして古典的デバイスに基づくジェネリックモデルをデファクトするかを理解するための道のりである。
論文 参考訳(メタデータ) (2025-02-03T15:25:03Z) - Quantum information with quantum-like bits [0.0]
多体相関を演算することで任意のゲートをどのように実装できるかを示す。
これは、多体古典システムの特殊クラスにおける量子的情報処理の可能性を示している。
論文 参考訳(メタデータ) (2024-08-12T20:40:54Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
本稿では,文字列ダイアグラムの観点からハイブリッドアルゴリズムを記述するための公式なフレームワークを開発する。
弦図の特筆すべき特徴は、量子古典的インタフェースに対応する関手ボックスの使用である。
論文 参考訳(メタデータ) (2024-07-04T06:37:16Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
我々は量子/古典系の力学に対する一般的なアプローチを開発する。
重要な特徴は、相互作用が量子成分から古典成分への情報のフローを許容するならば、必然的に力学は散逸的であることである。
論文 参考訳(メタデータ) (2024-03-24T08:26:54Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Learning in quantum games [41.67943127631515]
誘導量子状態ダイナミクスは (i) 系の固有値の力学を支配する古典的可換成分に分解されることを示す。
FTQLのダイナミクスは、全ての量子ゲームにおいて常に後悔することしか起こらない。
論文 参考訳(メタデータ) (2023-02-05T08:23:04Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Quantum Instability [30.674987397533997]
時間非依存な有限次元量子系が、古典力学系におけるそれに対応する線形不安定性をもたらすことを示す。
不安定な量子系は、安定な量子系よりも豊富なスペクトルとずっと長い再帰時間を持つ。
論文 参考訳(メタデータ) (2022-08-05T19:53:46Z) - Phase diagram of quantum generalized Potts-Hopfield neural networks [0.0]
我々は,q-state Potts-Hopfield ニューラルネットワークのオープン量子一般化を導入し,解析する。
この多体系の力学はリンドブラッド型のマルコフマスター方程式によって定式化される。
論文 参考訳(メタデータ) (2021-09-21T12:48:49Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
古典量子のハイブリッド進化を研究するための玩具モデルをいくつか紹介する。
本稿では,力学を計算し,数値シミュレーションのためのコードを提供する。
論文 参考訳(メタデータ) (2020-11-11T19:00:34Z) - From a quantum theory to a classical one [117.44028458220427]
量子対古典的交叉を記述するための形式的アプローチを提示し議論する。
この手法は、1982年にL. Yaffeによって、大きな$N$の量子場理論に取り組むために導入された。
論文 参考訳(メタデータ) (2020-04-01T09:16:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。