論文の概要: Signal-based AI-driven software solution for automated quantification of metastatic bone disease and treatment response assessment using Whole-Body Diffusion-Weighted MRI (WB-DWI) biomarkers in Advanced Prostate Cancer
- arxiv url: http://arxiv.org/abs/2505.09011v1
- Date: Tue, 13 May 2025 22:57:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.3174
- Title: Signal-based AI-driven software solution for automated quantification of metastatic bone disease and treatment response assessment using Whole-Body Diffusion-Weighted MRI (WB-DWI) biomarkers in Advanced Prostate Cancer
- Title(参考訳): 進行前立腺癌における全身拡散強調MRI(WB-DWI)バイオマーカーを用いた転移性骨疾患の自動定量化と治療応答評価のための信号ベースAI駆動ソフトウェアソリューション
- Authors: Antonio Candito, Matthew D Blackledge, Richard Holbrey, Nuria Porta, Ana Ribeiro, Fabio Zugni, Luca D'Erme, Francesca Castagnoli, Alina Dragan, Ricardo Donners, Christina Messiou, Nina Tunariu, Dow-Mu Koh,
- Abstract要約: We developed a AI-driven software solution to Quantify metastatic bone disease from WB-DWI scans。
i) 骨を分離するための骨格確率マップを生成する残留U-Netモデル、(ii) WB-DWI強度正規化のための統計フレームワーク、(iii) 浅い畳み込みニューラルネットワーク。
ソフトウェアは80.5%の精度、84.3%の感度、85.7%の特異性を達成した。
- 参考スコア(独自算出の注目度): 0.490307469564307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We developed an AI-driven software solution to quantify metastatic bone disease from WB-DWI scans. Core technologies include: (i) a weakly-supervised Residual U-Net model generating a skeleton probability map to isolate bone; (ii) a statistical framework for WB-DWI intensity normalisation, obtaining a signal-normalised b=900s/mm^2 (b900) image; and (iii) a shallow convolutional neural network that processes outputs from (i) and (ii) to generate a mask of suspected bone lesions, characterised by higher b900 signal intensity due to restricted water diffusion. This mask is applied to the gADC map to extract TDV and gADC statistics. We tested the tool using expert-defined metastatic bone disease delineations on 66 datasets, assessed repeatability of imaging biomarkers (N=10), and compared software-based response assessment with a construct reference standard based on clinical, laboratory and imaging assessments (N=118). Dice score between manual and automated delineations was 0.6 for lesions within pelvis and spine, with an average surface distance of 2mm. Relative differences for log-transformed TDV (log-TDV) and median gADC were below 9% and 5%, respectively. Repeatability analysis showed coefficients of variation of 4.57% for log-TDV and 3.54% for median gADC, with intraclass correlation coefficients above 0.9. The software achieved 80.5% accuracy, 84.3% sensitivity, and 85.7% specificity in assessing response to treatment compared to the construct reference standard. Computation time generating a mask averaged 90 seconds per scan. Our software enables reproducible TDV and gADC quantification from WB-DWI scans for monitoring metastatic bone disease response, thus providing potentially useful measurements for clinical decision-making in APC patients.
- Abstract(参考訳): We developed a AI-driven software solution to Quantify metastatic bone disease from WB-DWI scans。
主な技術は以下のとおりである。
(i)骨を分離する骨格確率マップを生成する弱教師付き残留U-Netモデル
(II)信号正規化b=900s/mm^2(b900)画像を得るWB-DWI強度正規化のための統計的枠組み
三 出力を処理する浅層畳み込みニューラルネットワーク
(i)および
(II)水拡散の制限による高b900信号強度を特徴とする骨病変の疑いのあるマスクを生成すること。
このマスクをgADCマップに適用し、TDVおよびgADC統計を抽出する。
画像バイオマーカー(N=10)の再現性を評価し, 臨床, 臨床, 画像評価(N=118)に基づく構築基準基準と比較した。
手指と手指の脱線は骨盤と脊椎の病変に対して0.6で, 平均表面距離は2mmであった。
対数変換TDV (log-TDV) と中等度gADCの相対差は, 9%, 5%以下であった。
再現性分析の結果,log-TDVは4.57%,中央値gADCは3.54%,クラス内相関係数は0.9。
ソフトウェアは80.5%の精度、84.3%の感度、85.7%の特異性を達成した。
マスクを生成する計算時間の平均は1スキャンあたり90秒であった。
本ソフトウェアはWB-DWIスキャンから再現性TDVおよびgADC定量化を可能とし,APC患者の臨床診断に有用である可能性が示唆された。
関連論文リスト
- A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI) [0.0]
全体拡散強調MRI(WB-DWI)のADC値とTotal Diffusion Volume(TDV)が癌画像バイオマーカーとして認識されている。
最初のステップとして, 骨格, 隣接する内臓器(肝, 脾臓, 膀胱, 腎臓) および脊髄の高速かつ再現可能な確率マップを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-26T17:03:46Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
光胸腺撮影と心電図は、連続血圧モニタリング(BP)を可能にする可能性がある。
しかし、データ品質と患者固有の要因の変化のため、正確で堅牢な機械学習(ML)モデルは依然として困難である。
本研究では,1つのモータリティで事前学習したモデルを効果的に利用して,異なる信号タイプの精度を向上させる方法について検討する。
本手法は, 拡張期BPの最先端精度を約1.5倍に向上し, 拡張期BPの精度を1.5倍に向上させる。
論文 参考訳(メタデータ) (2025-02-10T13:33:12Z) - Deep Radiomics Detection of Clinically Significant Prostate Cancer on Multicenter MRI: Initial Comparison to PI-RADS Assessment [0.0]
本研究は,2010年から2020年の間に取得した4つのデータセットから615例(平均年齢63.1+/-7歳)のバイパラメトリック(T2WおよびDW)前立腺MRI配列を分析した。
深部放射線学の機械学習モデルは, 病変レベルではなく, csPCa検出において, PI-RADSアセスメントに匹敵する性能を示した。
論文 参考訳(メタデータ) (2024-10-21T17:41:58Z) - Multi-centric AI Model for Unruptured Intracranial Aneurysm Detection and Volumetric Segmentation in 3D TOF-MRI [6.397650339311053]
我々は3DTOF-MRIで未破裂脳動脈瘤(UICA)の検出と分節を併用したオープンソースのnnU-NetベースのAIモデルを開発した。
4つの異なるトレーニングデータセットが作成され、nnU-Netフレームワークがモデル開発に使用された。
一次モデルは85%の感度と0.23FP/ケースレートを示し、ADAM-challengeの勝者(61%)と、ADAMデータでトレーニングされたnnU-Net(51%)を感度で上回った。
論文 参考訳(メタデータ) (2024-08-30T08:57:04Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - Diagnosing Bipolar Disorder from 3-D Structural Magnetic Resonance
Images Using a Hybrid GAN-CNN Method [0.0]
本研究では、3次元構造MRI画像(sMRI)から双極性障害(BD)を診断するためのハイブリッドGAN-CNNモデルを提案する。
その結果, 精度が75.8%, 感度が60.3%, 特異性が82.5%となり, 従来よりも3.5%高いことがわかった。
論文 参考訳(メタデータ) (2023-10-11T10:17:41Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - Accurate Prostate Cancer Detection and Segmentation on Biparametric MRI
using Non-local Mask R-CNN with Histopathological Ground Truth [0.0]
我々は,bp-MRIにおける前立腺内病変の検出とセグメンテーションを改善するため,ディープラーニングモデルを開発した。
前立腺切除術による脱線をMRIでトレーニングした。
前立腺切除術をベースとした非局所的なMask R-CNNは、微調整と自己訓練により、すべての評価基準を大幅に改善した。
論文 参考訳(メタデータ) (2020-10-28T21:07:09Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
19,993症例から36,316巻の胸部CTデータセットを収集,解析した。
自由テキストラジオグラフィーレポートから異常ラベルを自動的に抽出するルールベース手法を開発した。
胸部CTボリュームの多臓器・多臓器分類モデルも開発した。
論文 参考訳(メタデータ) (2020-02-12T00:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。