論文の概要: Towards Coordinate- and Dimension-Agnostic Machine Learning for Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2505.16549v1
- Date: Thu, 22 May 2025 11:37:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.259397
- Title: Towards Coordinate- and Dimension-Agnostic Machine Learning for Partial Differential Equations
- Title(参考訳): 部分微分方程式に対するコーディネート・次元非依存機械学習に向けて
- Authors: Trung V. Phan, George A. Kevrekidis, Soledad Villar, Yannis G. Kevrekidis, Juan M. Bello-Rivas,
- Abstract要約: 我々は、外部計算の形式主義で表されるスカラー場システムの進化を予測するために、機械学習アプローチを採用する。
1つの空間で学習した場力学は、異なる次元、座標系、境界条件、曲率を持つ他の空間での正確な予測に利用できることを示す。
- 参考スコア(独自算出の注目度): 5.371028888134542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The machine learning methods for data-driven identification of partial differential equations (PDEs) are typically defined for a given number of spatial dimensions and a choice of coordinates the data have been collected in. This dependence prevents the learned evolution equation from generalizing to other spaces. In this work, we reformulate the problem in terms of coordinate- and dimension-independent representations, paving the way toward what we call ``spatially liberated" PDE learning. To this end, we employ a machine learning approach to predict the evolution of scalar field systems expressed in the formalism of exterior calculus, which is coordinate-free and immediately generalizes to arbitrary dimensions by construction. We demonstrate the performance of this approach in the FitzHugh-Nagumo and Barkley reaction-diffusion models, as well as the Patlak-Keller-Segel model informed by in-situ chemotactic bacteria observations. We provide extensive numerical experiments that demonstrate that our approach allows for seamless transitions across various spatial contexts. We show that the field dynamics learned in one space can be used to make accurate predictions in other spaces with different dimensions, coordinate systems, boundary conditions, and curvatures.
- Abstract(参考訳): データ駆動型偏微分方程式(PDE)の同定のための機械学習手法は、通常、与えられた空間次元に対して定義される。
この依存は、学習された進化方程式が他の空間に一般化することを防ぐ。
本研究では,コーディネートとディメンション非依存の表現という観点から問題を再構築し,PDE学習の「親密な解放」への道を開く。
そこで我々は,外部計算の定式化に代表されるスカラー場システムの進化を機械学習を用いて予測する。
FitzHugh-Nagumo と Barkley の反応拡散モデルとPatlak-Keller-Segel モデルにおいて,本手法の有効性を実証した。
我々は,様々な空間的文脈におけるシームレスな遷移を可能にすることを実証する広範な数値実験を行った。
1つの空間で学習した場力学は、異なる次元、座標系、境界条件、曲率を持つ他の空間での正確な予測に利用できることを示す。
関連論文リスト
- Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Autoencoders for discovering manifold dimension and coordinates in data
from complex dynamical systems [0.0]
Autoencoder frameworkは暗黙の正則化と内部線形層と$L$正則化(重崩壊)を組み合わせる
このフレームワークは、状態空間モデリングや予測の応用のために自然に拡張できることを示す。
論文 参考訳(メタデータ) (2023-05-01T21:14:47Z) - Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces [43.877478563933316]
対称性は、考慮できる事前情報の最も基本的な形態の1つである。
本研究では,非ユークリッド空間の非常に大きなクラス上に定常ガウス過程を構築するための構築的および実践的手法を開発する。
論文 参考訳(メタデータ) (2023-01-30T17:27:12Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case [43.877478563933316]
対称性は、考慮できる事前情報の最も基本的な形態の1つである。
本研究では,非ユークリッド空間の非常に大きなクラス上に定常ガウス過程を構築するための構築的および実践的手法を開発する。
論文 参考訳(メタデータ) (2022-08-31T16:40:40Z) - Data-Driven Reduced-Order Modeling of Spatiotemporal Chaos with Neural
Ordinary Differential Equations [0.0]
本稿では,偏微分方程式のカオス力学を生かしたデータ駆動型還元次数モデリング手法を提案する。
次元の減少は周囲空間の予測と比較して性能を向上することがわかった。
低次元モデルでは、広い空間データに対する真の力学の短・長期統計レクリエーションに優れる。
論文 参考訳(メタデータ) (2021-08-31T20:00:33Z) - Feature Engineering with Regularity Structures [4.082216579462797]
機械学習タスクの特徴として,正則構造理論からのモデルの利用について検討する。
本研究では、時空信号に付随するモデル特徴ベクトルの柔軟な定義と、これらの特徴を線形回帰と組み合わせる方法を示す2つのアルゴリズムを提供する。
我々はこれらのアルゴリズムを、与えられた強制と境界データを用いてPDEの解を学ぶために設計されたいくつかの数値実験に適用する。
論文 参考訳(メタデータ) (2021-08-12T17:53:47Z) - Learning emergent PDEs in a learned emergent space [0.6157382820537719]
我々は結合エージェントシステムの集合記述のための偏微分方程式(PDE)の形式で予測モデルを学習する。
スロー多様体上の集団ダイナミクスは、創発座標における局所的"空間的"部分微分に基づく学習モデルによって近似できることを示した。
提案手法はエージェントダイナミクスをパラメータとする創発的空間座標の自動抽出とデータ駆動抽出を統合する。
論文 参考訳(メタデータ) (2020-12-23T15:17:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。