論文の概要: Spectral-inspired Operator Learning with Limited Data and Unknown Physics
- arxiv url: http://arxiv.org/abs/2505.21573v2
- Date: Fri, 26 Sep 2025 14:09:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 16:35:18.875652
- Title: Spectral-inspired Operator Learning with Limited Data and Unknown Physics
- Title(参考訳): 限られたデータと未知物理を用いたスペクトルインスパイアされた演算子学習
- Authors: Han Wan, Rui Zhang, Hao Sun,
- Abstract要約: スペクトルインスパイアされたニューラルオペレータ(SINO)は、明示的なPDE項を必要とせずに、わずか2-5軌道から複雑なシステムをモデル化することができる。
非線形効果をモデル化するために、SINOはスペクトル特性の乗法演算を行うPiブロックを用いており、エイリアスを抑制するためにローパスフィルタで補完される。
2次元PDEと3次元PDEのベンチマーク実験により、SINOは1-2桁の精度で最先端のパフォーマンスを達成した。
- 参考スコア(独自算出の注目度): 10.143396024546368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning PDE dynamics from limited data with unknown physics is challenging. Existing neural PDE solvers either require large datasets or rely on known physics (e.g., PDE residuals or handcrafted stencils), leading to limited applicability. To address these challenges, we propose Spectral-Inspired Neural Operator (SINO), which can model complex systems from just 2-5 trajectories, without requiring explicit PDE terms. Specifically, SINO automatically captures both local and global spatial derivatives from frequency indices, enabling a compact representation of the underlying differential operators in physics-agnostic regimes. To model nonlinear effects, it employs a Pi-block that performs multiplicative operations on spectral features, complemented by a low-pass filter to suppress aliasing. Extensive experiments on both 2D and 3D PDE benchmarks demonstrate that SINO achieves state-of-the-art performance, with improvements of 1-2 orders of magnitude in accuracy. Particularly, with only 5 training trajectories, SINO outperforms data-driven methods trained on 1000 trajectories and remains predictive on challenging out-of-distribution cases where other methods fail.
- Abstract(参考訳): 未知の物理で限られたデータからPDEダイナミクスを学ぶことは困難である。
既存のニューラルPDEソルバは、大きなデータセットを必要とするか、既知の物理(例えば、PDE残基または手作りステンシル)に依存しているため、適用範囲は限られている。
これらの課題に対処するために、明示的なPDE項を必要とせず、2-5の軌跡から複雑なシステムをモデル化できるSpectral-Inspired Neural Operator (SINO)を提案する。
具体的には、SINOは、周波数指標から局所空間微分と大域空間微分の両方を自動的にキャプチャし、物理に依存しない状態における基礎となる微分作用素のコンパクトな表現を可能にする。
非線形効果をモデル化するために、スペクトル特徴に対する乗算演算を行うPiブロックを用いており、エイリアスを抑制するためにローパスフィルタで補完される。
2次元PDEと3次元PDEのベンチマークによる大規模な実験は、SINOが1-2桁の精度で最先端のパフォーマンスを達成することを示した。
特に、たった5つのトレーニングトラジェクトリで、SINOは1000トラジェクトリでトレーニングされたデータ駆動手法よりも優れており、他の方法が失敗するアウト・オブ・ディストリビューションのケースに対して、予測的であり続けている。
関連論文リスト
- Mechanistic PDE Networks for Discovery of Governing Equations [52.492158106791365]
データから偏微分方程式を発見するためのモデルであるメカニスティックPDEネットワークを提案する。
表現されたPDEは解決され、特定のタスクのためにデコードされる。
線形偏微分方程式に特化して、ネイティブ、GPU対応、並列、スパース、微分可能多重グリッドソルバを開発した。
論文 参考訳(メタデータ) (2025-02-25T17:21:44Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [60.58067866537143]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data [6.3295494018089435]
本稿では,物理インフォームドニューラルネットワーク(PINN),従来のニューラルネットワーク(NN),および微分方程式(DE)に関する従来の数値離散化法を比較した。
我々は,ソフト制約のPINNアプローチに注目し,その数学的枠組みと計算フローを正規Dsと部分Dsの解法として定式化した。
我々は、PINNのDeepXDEベースの実装が、トレーニングにおいて軽量コードであり、効率的なだけでなく、CPU/GPUプラットフォーム間で柔軟なことを実証した。
論文 参考訳(メタデータ) (2024-08-19T13:02:06Z) - Physics-informed Discretization-independent Deep Compositional Operator Network [1.2430809884830318]
我々はPDEパラメータと不規則領域形状の様々な離散表現に一般化できる新しい物理インフォームドモデルアーキテクチャを提案する。
ディープ・オペレーター・ニューラルネットワークにインスパイアされた我々のモデルは、パラメータの繰り返し埋め込みの離散化に依存しない学習を含む。
提案手法の精度と効率を数値計算により検証した。
論文 参考訳(メタデータ) (2024-04-21T12:41:30Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
本研究では,データ活用を必要とせずにパラメトリック偏微分方程式(PDE)を解く演算子に基づく新しい手法を提案する。
提案手法は,既存の科学的機械学習技術と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T12:37:15Z) - Physics-constrained robust learning of open-form partial differential equations from limited and noisy data [1.50528618730365]
本研究では,自由形式偏微分方程式(PDE)を有限・雑音データから頑健に解明する枠組みを提案する。
ニューラルネットワークに基づく予測モデルは、システム応答に適合し、生成されたPDEに対する報酬評価器として機能する。
数値実験により, 非線形力学系から, 極めてノイズの多いデータで支配方程式を発見できることを示す。
論文 参考訳(メタデータ) (2023-09-14T12:34:42Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。