hqQUBO: A Hybrid-querying Quantum Optimization Model Validated with 16-qubits on an Ion Trap Quantum Computer for Life Science Applications
- URL: http://arxiv.org/abs/2506.01559v1
- Date: Mon, 02 Jun 2025 11:36:30 GMT
- Title: hqQUBO: A Hybrid-querying Quantum Optimization Model Validated with 16-qubits on an Ion Trap Quantum Computer for Life Science Applications
- Authors: Rong Chen, Quan-Xin Mei, Wen-Ding Zhao, Lin Yao, Hao-Xiang Yang, Shun-Yao Zhang, Jiao Chen, Hong-Lin Li,
- Abstract summary: We present the largest-scale implementation of digital simulation using up to 16 qubits on a trapped-ion quantum computer for life science problem.<n>Our work paves the way towards large-scale simulations of life science tasks on real quantum processors.
- Score: 4.529849615658088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AlphaFold has achieved groundbreaking advancements in protein structure prediction, exerting profound influence across biology, medicine, and drug discovery. However, its reliance on multiple sequence alignment (MSA) is inherently time-consuming due to the NP-hard nature of constructing MSAs. Quantum computing emerges as a promising alternative, compared to classical computers, offering the potentials for exponential speedup and improved accuracy on such complex optimization challenges. This work bridges the gap between quantum computing and MSA task efficiently and successfully, where we compared classical and quantum computational scaling as the number of qubits increases, and assessed the role of quantum entanglement in model performance. Furthermore, we proposed an innovative hybrid query encoding approach hyQUBO to avoid redundancy, and thereby the quantum resources significantly reduced to a scaling of $\mathcal{O}(NL)$. Additionally, coupling of VQE and the quenched CVaR scheme was utilized to enhance the robustness and convergence. The integration of multiple strategies facilitates the robust deployment of the quantum algorithm from idealized simulators (on CPU and GPU) to real-world, noisy quantum devices (HYQ-A37). To the best of our knowledge, our work represented the largest-scale implementation of digital simulation using up to 16 qubits on a trapped-ion quantum computer for life science problem, which achieved state of the art performance in both simulation and experimental results. Our work paves the way towards large-scale simulations of life science tasks on real quantum processors.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations [48.670876200492415]
Variational Quantum Algorithms (VQAs) are a promising approach for leveraging powerful Noisy Intermediate-Scale Quantum (NISQ) computers.<n>We propose $rho$DARTS, a differentiable Quantum Architecture Search (QAS) algorithm that models the search process as the evolution of a quantum mixed state.
arXiv Detail & Related papers (2025-06-04T08:30:35Z) - Training Hybrid Deep Quantum Neural Network for Reinforcement Learning Efficiently [2.7812018782449073]
Quantum machine learning (QML) emerged recently as a novel interdisciplinary research direction.<n>Recent works on hybrid QML models, compatible with noisy intermediate-scale quantum computers, have hinted at improved performance.<n>We present a scalable QML architecture that overcomes challenges and demonstrates efficient batch optimization through PQC blocks.
arXiv Detail & Related papers (2025-03-12T07:12:02Z) - MindSpore Quantum: A User-Friendly, High-Performance, and AI-Compatible Quantum Computing Framework [20.585698216552892]
We introduce MindSpore Quantum, a pioneering hybrid quantum-classical framework with a primary focus on noisy intermediate-scale quantum (NISQ) algorithms.
In addition to the core framework, we introduce QuPack, a meticulously crafted quantum computing acceleration engine.
arXiv Detail & Related papers (2024-06-25T03:28:40Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Resource-Efficient Hybrid Quantum-Classical Simulation Algorithm [0.0]
Digital quantum computers promise exponential speedups in performing quantum time-evolution.<n>The task of extracting desired quantum properties at intermediate time steps remains a computational bottleneck.<n>We propose a hybrid simulator that enables classical computers to leverage FTQC devices and quantum time propagators to overcome this bottleneck.
arXiv Detail & Related papers (2024-05-17T04:17:27Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
The time evolution operator plays a crucial role in the precise computation of chemical experiments on quantum computers.
We have proposed a new encoding method, namely quantum approximate time evolution (QATE) for the quantum implementation of the kinetic energy operator.
arXiv Detail & Related papers (2023-10-05T05:25:38Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Towards practical and massively parallel quantum computing emulation for
quantum chemistry [10.095945254794906]
Quantum computing is moving beyond its early stage and seeking for commercial applications in chemical and biomedical sciences.
It is valuable to emulate quantum computing on classical computers for developing quantum algorithms and validating quantum hardware.
Here we demonstrate a high-performance and massively parallel variational quantum eigensolver simulator based on matrix product states.
arXiv Detail & Related papers (2023-03-07T06:44:18Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.