論文の概要: Geometric and Physical Constraints Synergistically Enhance Neural PDE Surrogates
- arxiv url: http://arxiv.org/abs/2506.05513v1
- Date: Thu, 05 Jun 2025 18:54:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.200432
- Title: Geometric and Physical Constraints Synergistically Enhance Neural PDE Surrogates
- Title(参考訳): ニューラルPDEサロゲートを相乗的に強化する幾何学的および物理的制約
- Authors: Yunfei Huang, David S. Greenberg,
- Abstract要約: 台座格子上の物理法則と対称性を尊重する新しい入力層と出力層を導入する。
本稿では,これらの制約がPDEサロゲートの精度に与える影響について検討する。
- 参考スコア(独自算出の注目度): 1.492574139257933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural PDE surrogates can improve the cost-accuracy tradeoff of classical solvers, but often generalize poorly to new initial conditions and accumulate errors over time. Physical and symmetry constraints have shown promise in closing this performance gap, but existing techniques for imposing these inductive biases are incompatible with the staggered grids commonly used in computational fluid dynamics. Here we introduce novel input and output layers that respect physical laws and symmetries on the staggered grids, and for the first time systematically investigate how these constraints, individually and in combination, affect the accuracy of PDE surrogates. We focus on two challenging problems: shallow water equations with closed boundaries and decaying incompressible turbulence. Compared to strong baselines, symmetries and physical constraints consistently improve performance across tasks, architectures, autoregressive prediction steps, accuracy measures, and network sizes. Symmetries are more effective than physical constraints, but surrogates with both performed best, even compared to baselines with data augmentation or pushforward training, while themselves benefiting from the pushforward trick. Doubly-constrained surrogates also generalize better to initial conditions and durations beyond the range of the training data, and more accurately predict real-world ocean currents.
- Abstract(参考訳): ニューラルPDEサロゲートは、古典的解法器のコスト-精度トレードオフを改善することができるが、しばしば新しい初期条件に悪影響を及ぼし、時間とともにエラーを蓄積する。
物理的および対称性の制約は、この性能ギャップを閉じる可能性を示してきたが、これらの誘導バイアスを付与する既存の技術は、計算流体力学で一般的に用いられるスタッガードグリッドと相容れない。
ここでは,定常格子上の物理法則や対称性を尊重する新しい入力層と出力層を導入し,これらの制約がPDEサロゲートの精度にどのように影響するかを,初めて体系的に検討する。
境界が閉じた浅水方程式と非圧縮性乱流の2つの問題に焦点をあてる。
強いベースラインと比較して、対称性と物理的な制約は、タスク、アーキテクチャ、自動回帰予測ステップ、精度測定、ネットワークサイズを横断するパフォーマンスを一貫して改善します。
対称性は物理的な制約よりも効果的であるが、データ強化やプッシュフォワードトレーニングのベースラインと比較しても、両方のサロゲートが最高に機能し、それ自体はプッシュフォワードトリックの恩恵を受けている。
二重拘束されたサロゲートはまた、トレーニングデータの範囲を超えて初期条件や期間をより良く一般化し、より正確に現実世界の海流を予測する。
関連論文リスト
- Physics-Constrained Flow Matching: Sampling Generative Models with Hard Constraints [0.6990493129893112]
最近、偏微分方程式(PDE)によって支配される物理系に深部生成モデルが適用されている。
既存の手法は、厳しい制約を保証できないような、ソフトな罰則やアーキテクチャ上の偏見に頼っていることが多い。
本研究では,事前学習フローベース生成モデルにおける任意の非線形制約を強制するゼロショット推論フレームワークである物理制約フローマッチングを提案する。
論文 参考訳(メタデータ) (2025-06-04T17:12:37Z) - Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training [49.8035317670223]
科学基盤モデル(SciFM)は、様々な領域にまたがる伝達可能な表現を学習するための有望なツールとして登場しつつある。
本稿では,PDE残差を単独の学習信号として,あるいはデータ損失と組み合わせて事前学習に組み込むことにより,限定的あるいは実用的でないトレーニングデータに補償することを提案する。
以上の結果から, PDE制約による事前学習は, 解データのみを訓練したモデルよりも, 一般化を著しく向上させることが示された。
論文 参考訳(メタデータ) (2025-03-24T19:12:39Z) - Chaos into Order: Neural Framework for Expected Value Estimation of Stochastic Partial Differential Equations [0.9944647907864256]
本稿では,離散化の必要性を排除し,不確実性を明示的にモデル化するSPDE推定のための新しいニューラルネットワークフレームワークを提案する。
これは、SPDEの期待値を直接非分散的に推定できる最初のニューラルネットワークフレームワークであり、科学計算における一歩となる。
本研究は, ニューラルベースSPDEソルバの潜在可能性, 特に従来の手法が不安定な高次元問題に対する可能性を明らかにした。
論文 参考訳(メタデータ) (2025-02-05T23:27:28Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Graph Neural PDE Solvers with Conservation and Similarity-Equivariance [6.077284832583712]
本研究は,保存法則や物理対称性に固執する,高度に一般化可能な新しい機械学習アーキテクチャを提案する。
このアーキテクチャの基礎はグラフニューラルネットワーク(GNN)である。
論文 参考訳(メタデータ) (2024-05-25T11:18:27Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - Learning Layer-wise Equivariances Automatically using Gradients [66.81218780702125]
畳み込みは等価対称性をニューラルネットワークにエンコードし、より優れた一般化性能をもたらす。
対称性は、ネットワークが表現できる機能、事前に指定する必要、適応できない機能に対して、固定されたハード制約を提供する。
私たちのゴールは、勾配を使ってデータから自動的に学習できるフレキシブル対称性の制約を可能にすることです。
論文 参考訳(メタデータ) (2023-10-09T20:22:43Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
まず、オフラインRLにおけるQ値推定のばらつきの主な原因として、基本パターン、自己励起を同定する。
そこで本研究では,Q-network の学習における進化特性を測定するために,SEEM(Self-Excite Eigen Value Measure)尺度を提案する。
われわれの理論では、訓練が早期に発散するかどうかを確実に決定できる。
論文 参考訳(メタデータ) (2023-10-06T17:57:44Z) - Kinematically consistent recurrent neural networks for learning inverse
problems in wave propagation [0.0]
そこで我々は,新しい運動論的に整合した物理に基づく機械学習モデルを提案する。
特に,波動伝搬における逆問題について物理的に解釈可能な学習を試みる。
控えめなトレーニングデータであっても、このキネマティック一貫性のあるネットワークは、通常のLSTM予測の誤り規範である$L_infty$を、それぞれ約45%と55%削減することができる。
論文 参考訳(メタデータ) (2021-10-08T05:51:32Z) - Learning the solution operator of parametric partial differential
equations with physics-informed DeepOnets [0.0]
ディープ作用素ネットワーク(DeepONets)は、無限次元バナッハ空間間の非線形作用素を近似する実証能力によって注目されている。
DeepOnetモデルの出力をバイアスする効果的な正規化メカニズムを導入し、物理整合性を確保する新しいモデルクラスを提案する。
我々は,このシンプルかつ極めて効果的な拡張が,DeepOnetsの予測精度を大幅に向上するだけでなく,大規模なトレーニングデータセットの必要性を大幅に低減できることを示した。
論文 参考訳(メタデータ) (2021-03-19T18:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。