論文の概要: KP-PINNs: Kernel Packet Accelerated Physics Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2506.08563v1
- Date: Tue, 10 Jun 2025 08:33:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:41.955288
- Title: KP-PINNs: Kernel Packet Accelerated Physics Informed Neural Networks
- Title(参考訳): KP-PINNs:カーネルパケット加速物理インフォームニューラルネットワーク
- Authors: Siyuan Yang, Cheng Song, Zhilu Lai, Wenjia Wang,
- Abstract要約: 我々はKernel PacketAccelerated PINN(KP-PINN)という新しいPINNフレームワークを提案する。
KP-PINNは、再生カーネルヒルベルト空間(RKHS)ノルムを用いて損失関数を新たに表現し、カーネルパケット法を用いて計算を高速化する。
数値実験により、KP-PINNは微分方程式を効果的に効率的に解けることを示した。
- 参考スコア(独自算出の注目度): 12.73776469872022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential equations are involved in modeling many engineering problems. Many efforts have been devoted to solving differential equations. Due to the flexibility of neural networks, Physics Informed Neural Networks (PINNs) have recently been proposed to solve complex differential equations and have demonstrated superior performance in many applications. While the L2 loss function is usually a default choice in PINNs, it has been shown that the corresponding numerical solution is incorrect and unstable for some complex equations. In this work, we propose a new PINNs framework named Kernel Packet accelerated PINNs (KP-PINNs), which gives a new expression of the loss function using the reproducing kernel Hilbert space (RKHS) norm and uses the Kernel Packet (KP) method to accelerate the computation. Theoretical results show that KP-PINNs can be stable across various differential equations. Numerical experiments illustrate that KP-PINNs can solve differential equations effectively and efficiently. This framework provides a promising direction for improving the stability and accuracy of PINNs-based solvers in scientific computing.
- Abstract(参考訳): 微分方程式は多くの工学的な問題をモデル化する。
多くの研究が微分方程式の解法に費やされている。
ニューラルネットワークの柔軟性のため、最近、複雑な微分方程式を解くために物理情報ニューラルネットワーク(PINN)が提案され、多くのアプリケーションで優れた性能を示している。
L2損失関数は通常、PINNのデフォルト選択であるが、対応する数値解はいくつかの複素方程式に対して誤りで不安定であることが示されている。
本稿では,Kernel PacketAccelerated PINNs (KP-PINNs) と呼ばれる新しいPINNフレームワークを提案する。
理論的には、KP-PINNは様々な微分方程式で安定であることが示されている。
数値実験により、KP-PINNは微分方程式を効果的に効率的に解けることを示した。
このフレームワークは、科学計算におけるPINNの安定性と精度を向上させるための有望な方向を提供する。
関連論文リスト
- Densely Multiplied Physics Informed Neural Networks [1.8554335256160261]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)を扱う大きな可能性を示している
本稿では,PINNの性能向上のためにニューラルネットワークアーキテクチャを改良する。
本稿では,隠れたレイヤの出力と隠れたレイヤの出力とを乗算する,密乗型PINN(DM-PINN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-02-06T20:45:31Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - $Δ$-PINNs: physics-informed neural networks on complex geometries [3.238149275474964]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式を含む前方および逆問題の解法において有望であることを示す。
現在までに、問題が解決されている領域のトポロジについて、PINNに知らせる明確な方法はない。
本稿では,Laplace-Beltrami演算子の固有関数に基づくPINNの新たな位置符号化機構を提案する。
論文 参考訳(メタデータ) (2022-09-08T18:03:19Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。