Watermarking Quantum Neural Networks Based on Sample Grouped and Paired Training
- URL: http://arxiv.org/abs/2506.12675v1
- Date: Sun, 15 Jun 2025 01:04:52 GMT
- Title: Watermarking Quantum Neural Networks Based on Sample Grouped and Paired Training
- Authors: Limengnan Zhou, Hanzhou Wu,
- Abstract summary: Quantum neural networks (QNNs) leverage quantum computing to create powerful and efficient artificial intelligence models.<n>How to protect intellectual property (IP) of QNNs becomes an urgent problem to be solved in the era of quantum computing.<n>We make the first attempt towards IP protection of QNNs by watermarking.
- Score: 10.363612241019652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum neural networks (QNNs) leverage quantum computing to create powerful and efficient artificial intelligence models capable of solving complex problems significantly faster than traditional computers. With the fast development of quantum hardware technology, such as superconducting qubits, trapped ions, and integrated photonics, quantum computers may become reality, accelerating the applications of QNNs. However, preparing quantum circuits and optimizing parameters for QNNs require quantum hardware support, expertise, and high-quality data. How to protect intellectual property (IP) of QNNs becomes an urgent problem to be solved in the era of quantum computing. We make the first attempt towards IP protection of QNNs by watermarking. To this purpose, we collect classical clean samples and trigger ones, each of which is generated by adding a perturbation to a clean sample, associated with a label different from the ground-truth one. The host QNN, consisting of quantum encoding, quantum state transformation, and quantum measurement, is then trained from scratch with the clean samples and trigger ones, resulting in a watermarked QNN model. During training, we introduce sample grouped and paired training to ensure that the performance on the downstream task can be maintained while achieving good performance for watermark extraction. When disputes arise, by collecting a mini-set of trigger samples, the hidden watermark can be extracted by analyzing the prediction results of the target model corresponding to the trigger samples, without accessing the internal details of the target QNN model, thereby verifying the ownership of the model. Experiments have verified the superiority and applicability of this work.
Related papers
- Efficient Quantum Convolutional Neural Networks for Image Classification: Overcoming Hardware Constraints [2.3895835682351287]
Quantum convolutional neural networks (CNNs) hold potential to outperform classical approaches.<n>We introduce an encoding scheme that significantly reduces the input dimensionality.<n>We validate our experiments on IBM's Heron r2 quantum processor, achieving $96.08%$ classification accuracy.
arXiv Detail & Related papers (2025-05-09T11:09:52Z) - A Coverage-Guided Testing Framework for Quantum Neural Networks [1.7101498519540597]
Quantum Neural Networks (QNNs) combine quantum computing and neural networks to improve machine learning models.
We propose QCov, a set of test coverage criteria specifically designed for QNNs to systematically evaluate QNN state exploration.
arXiv Detail & Related papers (2024-11-03T08:07:27Z) - Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
deepfake technologies pose challenges to privacy, security, and information integrity.
This paper introduces a Quantum-Trained Convolutional Neural Network framework designed to enhance the detection of deepfake audio.
arXiv Detail & Related papers (2024-10-11T20:52:10Z) - QuanTest: Entanglement-Guided Testing of Quantum Neural Network Systems [45.18451374144537]
Quantum Neural Network (QNN) combines the Deep Learning (DL) principle with the fundamental theory of quantum mechanics to achieve machine learning tasks with quantum acceleration.
QNN systems differ significantly from traditional quantum software and classical DL systems, posing critical challenges for QNN testing.
We propose QuanTest, a quantum entanglement-guided adversarial testing framework to uncover potential erroneous behaviors in QNN systems.
arXiv Detail & Related papers (2024-02-20T12:11:28Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.