論文の概要: Permutation Equivariant Neural Controlled Differential Equations for Dynamic Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2506.20324v1
- Date: Wed, 25 Jun 2025 11:06:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-26 21:00:42.707201
- Title: Permutation Equivariant Neural Controlled Differential Equations for Dynamic Graph Representation Learning
- Title(参考訳): 動的グラフ表現学習のための置換同変ニューラル制御微分方程式
- Authors: Torben Berndt, Benjamin Walker, Tiexin Qin, Jan Stühmer, Andrey Kormilitzin,
- Abstract要約: 我々は、置換同変関数空間にグラフニューラルネットワークCDEを投影する、置換同変ニューラルグラフCDEを紹介する。
これにより、表現力を損なうことなくモデルのパラメータ数を大幅に減少させ、より効率的なトレーニングと一般化の改善をもたらす。
- 参考スコア(独自算出の注目度): 2.7029906768920036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic graphs exhibit complex temporal dynamics due to the interplay between evolving node features and changing network structures. Recently, Graph Neural Controlled Differential Equations (Graph Neural CDEs) successfully adapted Neural CDEs from paths on Euclidean domains to paths on graph domains. Building on this foundation, we introduce Permutation Equivariant Neural Graph CDEs, which project Graph Neural CDEs onto permutation equivariant function spaces. This significantly reduces the model's parameter count without compromising representational power, resulting in more efficient training and improved generalisation. We empirically demonstrate the advantages of our approach through experiments on simulated dynamical systems and real-world tasks, showing improved performance in both interpolation and extrapolation scenarios.
- Abstract(参考訳): 動的グラフは、進化するノードの特徴とネットワーク構造の変化の間の相互作用により、複雑な時間的ダイナミクスを示す。
近年,グラフニューラル制御微分方程式 (Graph Neural CDE) はユークリッド領域の経路からグラフ領域の経路へのニューラルCDEの適応に成功している。
この基礎の上に、置換同変関数空間にグラフニューラルネットワークCDEを投影する、置換同変ニューラルネットワークCDEを導入する。
これにより、表現力を損なうことなくモデルのパラメータ数を大幅に減少させ、より効率的なトレーニングと一般化の改善をもたらす。
シミュレーションされた動的システムと実世界のタスクの実験を通じて,本手法の利点を実証的に実証し,補間シナリオと補間シナリオの両方における性能の向上を示した。
関連論文リスト
- Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning [39.25135680793105]
離散同変グラフニューラルネットワーク(DEGNN)を提案する。
具体的には、幾何学的特徴を置換不変な埋め込みに変換することによって、このような離散同変メッセージパッシングを構築することができることを示す。
DEGNNはデータ効率が良く、少ないデータで学習でき、観測不能な向きなどのシナリオをまたいで一般化できることを示す。
論文 参考訳(メタデータ) (2024-06-24T03:37:51Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
等変性を維持しながら, 2階連続性をGNNに組み込む方法を示す。
また、SEGNOに関する理論的知見も提供し、隣接する状態間の一意の軌跡を学習できることを強調している。
我々のモデルは最先端のベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-08-25T07:15:58Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T04:12:50Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
本稿では,時間的相互作用を持つ動的グラフの表現学習に焦点を当てる。
本稿では,ノード埋め込みトラジェクトリの連続的動的進化を特徴付ける動的グラフに対する一般化微分モデルを提案する。
本フレームワークは,セグメントを統合せずにグラフの進化を動的に表現できる機能など,いくつかの望ましい特徴を示す。
論文 参考訳(メタデータ) (2023-02-22T12:59:38Z) - Continuous-Depth Neural Models for Dynamic Graph Prediction [16.89981677708299]
連続深度グラフニューラルネットワーク(GNN)の枠組みを紹介する。
ニューラルグラフ微分方程式(ニューラルグラフ微分方程式)は、GNNに対抗して形式化される。
その結果、遺伝的制御ネットワークにおけるトラフィック予測や予測など、アプリケーション全体にわたって提案されたモデルの有効性が証明された。
論文 参考訳(メタデータ) (2021-06-22T07:30:35Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
本稿では,E(n)-Equivariant Graph Neural Networks (EGNNs) と呼ばれる回転,翻訳,反射,置換に等価なグラフニューラルネットワークを学習する新しいモデルを提案する。
既存の手法とは対照的に、私たちの仕事は計算的に高価な中間層における高階表現を必要としません。
論文 参考訳(メタデータ) (2021-02-19T10:25:33Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。