論文の概要: Neural Langevin Machine: a local asymmetric learning rule can be creative
- arxiv url: http://arxiv.org/abs/2506.23546v1
- Date: Mon, 30 Jun 2025 06:35:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.940518
- Title: Neural Langevin Machine: a local asymmetric learning rule can be creative
- Title(参考訳): Neural Langevin Machine: 局所的な非対称学習規則は創造的である
- Authors: Zhendong Yu, Weizhong Huang, Haiping Huang,
- Abstract要約: このような生成モデルであるニューラルランゲヴィンマシンは,解析的な形態の分布から解釈可能であり,訓練も容易である。
ニューラルネットワークで創造的なダイナミクスの連続的なサンプリングを実現し、脳回路の想像力を模倣することができる。
- 参考スコア(独自算出の注目度): 2.285821277711785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fixed points of recurrent neural networks can be leveraged to store and generate information. These fixed points can be captured by the Boltzmann-Gibbs measure, which leads to neural Langevin dynamics that can be used for sampling and learning a real dataset. We call this type of generative model neural Langevin machine, which is interpretable due to its analytic form of distribution and is simple to train. Moreover, the learning process is derived as a local asymmetric plasticity rule, bearing biological relevance. Therefore, one can realize a continuous sampling of creative dynamics in a neural network, mimicking an imagination process in brain circuits. This neural Langevin machine may be another promising generative model, at least in its strength in circuit-based sampling and biologically plausible learning rule.
- Abstract(参考訳): リカレントニューラルネットワークの固定された点は、情報の保存と生成に利用することができる。
これらの固定点をボルツマン・ギブス測度で捉えることができ、実際のデータセットのサンプリングと学習に使用できる神経ランゲヴィンダイナミクスをもたらす。
このような生成モデルであるニューラルランゲヴィンマシンは,解析的な形態の分布から解釈可能であり,訓練も容易である。
さらに、この学習過程は、生物学的関連性を有する局所的な非対称な塑性規則として導出される。
したがって、ニューラルネットワークにおける創造的ダイナミクスの連続的なサンプリングを実現することができ、脳回路における想像の過程を模倣することができる。
このニューラルランゲヴィンマシンは、少なくとも回路ベースのサンプリングと生物学的に妥当な学習規則の強さにおいて、もう1つの有望な生成モデルであるかもしれない。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - CHANI: Correlation-based Hawkes Aggregation of Neurons with bio-Inspiration [7.26259898628108]
本研究の目的は,生物学にインスパイアされたニューラルネットワークが,局所的な変換のみによって分類タスクを学習できることを数学的に証明することである。
我々は、ホークス過程によってニューロンの活動がモデル化されるCHANIというスパイクニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T07:17:58Z) - Toward stochastic neural computing [11.955322183964201]
本稿では,ノイズ入力のストリームをスパイキングニューロンの集団によって変換し,処理するニューラルコンピューティングの理論を提案する。
本手法をIntelのLoihiニューロモルフィックハードウェアに適用する。
論文 参考訳(メタデータ) (2023-05-23T12:05:35Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - A multi-agent model for growing spiking neural networks [0.0]
このプロジェクトでは、学習メカニズムとして、スパイキングニューラルネットワークのニューロン間の接続を拡大するためのルールについて検討している。
シミュレーション環境での結果は、与えられたパラメータセットに対して、テストされた関数を再現するトポロジに到達可能であることを示した。
このプロジェクトはまた、モデルパラメーターに最適な値を得るために、遺伝的アルゴリズムのようなテクニックを使用するための扉を開く。
論文 参考訳(メタデータ) (2020-09-21T15:11:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。