論文の概要: Learnable-Differentiable Finite Volume Solver for Accelerated Simulation of Flows
- arxiv url: http://arxiv.org/abs/2507.01975v1
- Date: Mon, 23 Jun 2025 14:22:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-07 02:47:44.449256
- Title: Learnable-Differentiable Finite Volume Solver for Accelerated Simulation of Flows
- Title(参考訳): 流れの加速シミュレーションのための学習可能微分可能有限体積解法
- Authors: Mengtao Yan, Qi Wang, Haining Wang, Ruizhi Chengze, Yi Zhang, Hongsheng Liu, Zidong Wang, Fan Yu, Qi Qi, Hao Sun,
- Abstract要約: 本研究では,粗い格子上の流動の効率的かつ正確なシミュレーションを行うため,LDrと呼ばれる学習可能で微分可能な有限体積解法を提案する。
実験により、LDrは、顕著なマージンを持つベースラインモデルを上回る効率を達成することが示された。
- 参考スコア(独自算出の注目度): 40.06403338393609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation of fluid flows is crucial for modeling physical phenomena like meteorology, aerodynamics, and biomedicine. Classical numerical solvers often require fine spatiotemporal grids to satisfy stability, consistency, and convergence conditions, leading to substantial computational costs. Although machine learning has demonstrated better efficiency, they typically suffer from issues of interpretability, generalizability, and data dependency. Hence, we propose a learnable and differentiable finite volume solver, called LDSolver, designed for efficient and accurate simulation of fluid flows on spatiotemporal coarse grids. LDSolver comprises two key components: (1) a differentiable finite volume solver, and (2) an learnable module providing equivalent approximation for fluxes (derivatives and interpolations), and temporal error correction on coarse grids. Even with limited training data (e.g., only a few trajectories), our model could accelerate the simulation while maintaining a high accuracy with superior generalizability. Experiments on different flow systems (e.g., Burgers, decaying, forced and shear flows) show that LDSolver achieves state-of-the-art performance, surpassing baseline models with notable margins.
- Abstract(参考訳): 流体のシミュレーションは、気象学、空気力学、生物医学などの物理現象をモデル化するために重要である。
古典的な数値解法は、安定性、一貫性、収束条件を満たすために時空間の細かな格子を必要とすることが多く、かなりの計算コストをもたらす。
機械学習は効率が良くなったが、一般的には解釈可能性、一般化可能性、データ依存といった問題に悩まされる。
そこで我々は,時空間粗いグリッド上での流体流動の効率的かつ正確なシミュレーションを目的とした,LDSolverと呼ばれる学習可能かつ微分可能な有限体積解法を提案する。
LDSolver は,(1) 微分可能な有限体積解法,(2) フラックス(微分と補間)の等価近似を提供する学習可能なモジュール,および粗い格子上の時間誤差補正の2つの重要な構成要素から構成される。
限られた訓練データ(例:数トラジェクトリのみ)であっても、より優れた一般化性を維持しながらシミュレーションを高速化できる。
異なる流れ系(例えば、バーガー、崩壊、強制およびせん断流)における実験は、LDSolverが最先端のパフォーマンスを達成し、顕著なマージンを持つベースラインモデルを上回っていることを示している。
関連論文リスト
- Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time [57.30651532625017]
本稿では,数値シミュレーション,神経物理,生成制御を統合した新しいハイブリッド手法を提案する。
本システムでは, 多様な2D/3Dシナリオ, 材料タイプ, 障害物相互作用における堅牢な性能を示す。
受け入れ次第、モデルとデータの両方をリリースすることを約束します。
論文 参考訳(メタデータ) (2025-05-25T01:27:18Z) - PICT -- A Differentiable, GPU-Accelerated Multi-Block PISO Solver for Simulation-Coupled Learning Tasks in Fluid Dynamics [59.38498811984876]
我々はPyTorchで符号化された可変圧単純化解器であるPICTをGPU(Graphics-Processing-unit)をサポートした流体シミュレータとして提案する。
まず,様々なベンチマークにおいて,フォワードシミュレーションと導出した勾配の精度を検証した。
2次元, 3次元の複雑な乱流モデルの学習には, 解法によって得られる勾配が有効であることを示す。
論文 参考訳(メタデータ) (2025-05-22T17:55:10Z) - LaPON: A Lagrange's-mean-value-theorem-inspired operator network for solving PDEs and its application on NSE [8.014720523981385]
ラグランジュの平均値定理に着想を得た演算子ネットワークであるLaPONを提案する。
損失関数ではなく、ニューラルネットワークアーキテクチャに直接、事前の知識を組み込む。
LaPONは、高忠実度流体力学シミュレーションのためのスケーラブルで信頼性の高いソリューションを提供する。
論文 参考訳(メタデータ) (2025-05-18T10:45:17Z) - Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence [3.0954913678141627]
フーリエ・ニューラル演算子(FNO)に基づくモデルと偏微分方程式(PDE)を組み合わせれば,流体力学シミュレーションを高速化できる。
また、乱流の長期シミュレーションのために、機械学習モデルによって回避される必要のある純粋にデータ駆動アプローチの落とし穴についても論じる。
論文 参考訳(メタデータ) (2024-09-23T02:02:02Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Stacked Generative Machine Learning Models for Fast Approximations of
Steady-State Navier-Stokes Equations [1.4150517264592128]
種々の境界条件下で定常なナビエ・ストークス方程式を解くために弱教師付きアプローチを開発する。
ラベル付きシミュレーションデータを使わずに最先端の結果を得られる。
我々は、N-S方程式の数値解を生成する複雑さを増大させる積み重ねモデルを訓練する。
論文 参考訳(メタデータ) (2021-12-13T05:08:55Z) - Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models [0.2538209532048866]
還元次数モデル (ROM) はパラメータ依存の流体力学問題を高速に近似する。
ディープラーニング(DL)ベースのROMは、非線形トライアル多様体と還元力学の両方を非侵襲的に学習することで、これらの制限をすべて克服する。
得られたPOD-DL-ROMは、シリンダーベンチマークの周囲の流れ、固定された剛性ブロックに付着した弾性ビームとラミナー非圧縮性フローとの流体構造相互作用、大脳動脈瘤内の血流のほぼリアルタイムに正確な結果をもたらすことが示されている。
論文 参考訳(メタデータ) (2021-06-10T13:07:33Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
二次元乱流のモデリングにエンド・ツー・エンド・ディープ・ラーニングを用いて計算流体力学の近似を改良する。
乱流の直接数値シミュレーションと大規模渦シミュレーションでは,各空間次元の8~10倍の微細分解能を持つベースラインソルバと同程度に精度が高い。
提案手法は,機械学習とハードウェアアクセラレータを応用して,精度や一般化を犠牲にすることなくシミュレーションを改善する方法を示す。
論文 参考訳(メタデータ) (2021-01-28T19:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。