論文の概要: Physics-Informed Neural Networks with Hard Nonlinear Equality and Inequality Constraints
- arxiv url: http://arxiv.org/abs/2507.08124v1
- Date: Thu, 10 Jul 2025 19:24:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.154065
- Title: Physics-Informed Neural Networks with Hard Nonlinear Equality and Inequality Constraints
- Title(参考訳): 強非線形等式と不等式制約を持つ物理インフォームニューラルネットワーク
- Authors: Ashfaq Iftakher, Rahul Golder, M. M. Faruque Hasan,
- Abstract要約: KKT-Hardnetは、線形および非線形等式および不等式制約を機械精度まで適用するPINNアーキテクチャである。
KKT-Hardnetを実世界の化学プロセスシミュレーションとテスト問題の両方に適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional physics-informed neural networks (PINNs) do not guarantee strict constraint satisfaction. This is problematic in engineering systems where minor violations of governing laws can significantly degrade the reliability and consistency of model predictions. In this work, we develop KKT-Hardnet, a PINN architecture that enforces both linear and nonlinear equality and inequality constraints up to machine precision. It leverages a projection onto the feasible region through solving Karush-Kuhn-Tucker (KKT) conditions of a distance minimization problem. Furthermore, we reformulate the nonlinear KKT conditions using log-exponential transformation to construct a general sparse system with only linear and exponential terms, thereby making the projection differentiable. We apply KKT-Hardnet on both test problems and a real-world chemical process simulation. Compared to multilayer perceptrons and PINNs, KKT-Hardnet achieves higher accuracy and strict constraint satisfaction. This approach allows the integration of domain knowledge into machine learning towards reliable hybrid modeling of complex systems.
- Abstract(参考訳): 従来の物理情報ニューラルネットワーク(PINN)は厳密な制約満足度を保証していない。
これは、法則の小さな違反がモデル予測の信頼性と一貫性を著しく低下させる工学システムにおいて問題となる。
本研究では,線形および非線形等式および不等式制約を機械精度まで適用するPINNアーキテクチャであるKKT-Hardnetを開発する。
距離最小化問題のKKT(Karush-Kuhn-Tucker)条件を解くことにより、実現可能な領域への射影を利用する。
さらに、対数指数変換を用いて非線形KKT条件を再構成し、線形および指数項のみの一般スパースシステムを構築することにより、射影を微分可能とする。
KKT-Hardnetを実世界の化学プロセスシミュレーションとテスト問題の両方に適用する。
マルチ層パーセプトロンやPINNと比較して、KKT-Hardnetは高い精度と厳密な制約満足度を実現する。
このアプローチにより、複雑なシステムの信頼性の高いハイブリッドモデリングに向けて、ドメイン知識を機械学習に統合することができる。
関連論文リスト
- Solved in Unit Domain: JacobiNet for Differentiable Coordinate Transformations [8.832884051186426]
JacobiNetは、教師付きポイントペアから連続的で微分可能なマッピングを学習するニューラルネットワークベースの計算方法である。
正規化の問題に効果的に対処し、境界条件の厳しい制約を緩和し、損失項間の長期間の不均衡を緩和する。
相対的なL2誤差を0.287-0.637から0.013-0.039に削減し、18.3*の平均精度を向上した。
論文 参考訳(メタデータ) (2025-08-04T15:45:03Z) - LaPON: A Lagrange's-mean-value-theorem-inspired operator network for solving PDEs and its application on NSE [8.014720523981385]
ラグランジュの平均値定理に着想を得た演算子ネットワークであるLaPONを提案する。
損失関数ではなく、ニューラルネットワークアーキテクチャに直接、事前の知識を組み込む。
LaPONは、高忠実度流体力学シミュレーションのためのスケーラブルで信頼性の高いソリューションを提供する。
論文 参考訳(メタデータ) (2025-05-18T10:45:17Z) - ENFORCE: Nonlinear Constrained Learning with Adaptive-depth Neural Projection [0.0]
本稿では,適応プロジェクションモジュール(AdaNP)を用いたニューラルネットワークアーキテクチャであるENFORCEを紹介した。
プロジェクションマッピングが1-Lipschitzであることが証明され、安定したトレーニングに適している。
我々の新しいアーキテクチャの予測は、ニューラルネットワークの入力と出力の両方において非線形である$N_C$等式制約を満たす。
論文 参考訳(メタデータ) (2025-02-10T18:52:22Z) - Scaling physics-informed hard constraints with mixture-of-experts [0.0]
我々は、Mixture-of-Experts (MoE) を用いて、ハード物理制約を強制するためのスケーラブルなアプローチを開発する。
MoEは小さなドメインに対する制約を課し、それぞれが微分可能な最適化によって"専門家"によって解決される。
標準的な微分可能最適化と比較して、我々のスケーラブルなアプローチは、ニューラルPDEソルバ設定においてより精度が高い。
論文 参考訳(メタデータ) (2024-02-20T22:45:00Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
我々は、ニューラルネットワークに厳しい制約を課すための一連のアプローチを開発する。
制約は、ニューラルネットワークとそのデリバティブに適用される線形作用素として指定することができる。
私たちのアプローチは、広範囲の現実世界のアプリケーションで実証されています。
論文 参考訳(メタデータ) (2023-06-15T08:33:52Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit
Constraints [49.66841118264278]
私たちは、現在のアプローチの限界を押し上げるために、一連の挑戦的なカオスと拡張ボディシステムを導入します。
実験の結果,明示的な制約を持つモンテカルロ座標は,精度とデータ効率を100倍に向上させることがわかった。
論文 参考訳(メタデータ) (2020-10-26T13:35:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。