論文の概要: Operationalizing AI for Good: Spotlight on Deployment and Integration of AI Models in Humanitarian Work
- arxiv url: http://arxiv.org/abs/2507.15823v1
- Date: Mon, 21 Jul 2025 17:30:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.508491
- Title: Operationalizing AI for Good: Spotlight on Deployment and Integration of AI Models in Humanitarian Work
- Title(参考訳): 善のためのAIの運用 - 人道的作業におけるAIモデルの展開と統合のスポットライト
- Authors: Anton Abilov, Ke Zhang, Hemank Lamba, Elizabeth M. Olson, Joel R. Tetreault, Alejandro Jaimes,
- Abstract要約: 人道的・人道的組織(H2H)との密接なコラボレーションの詳細を共有します。
リソース制約のある環境でAIモデルをデプロイする方法、継続的なパフォーマンスアップデートのためにそのメンテナンス方法について論じる。
- 参考スコア(独自算出の注目度): 52.96150571365764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Publications in the AI for Good space have tended to focus on the research and model development that can support high-impact applications. However, very few AI for Good papers discuss the process of deploying and collaborating with the partner organization, and the resulting real-world impact. In this work, we share details about the close collaboration with a humanitarian-to-humanitarian (H2H) organization and how to not only deploy the AI model in a resource-constrained environment, but also how to maintain it for continuous performance updates, and share key takeaways for practitioners.
- Abstract(参考訳): AI for Goodスペースのパブリケーションは、ハイインパクトアプリケーションをサポートする研究とモデル開発に焦点を当てる傾向にある。
しかし、パートナー組織と共同作業するプロセスと、結果として生ずる実世界への影響について論じる論文はごくわずかである。
本稿では、人道的・人道的(H2H)組織との密接なコラボレーションの詳細と、リソース制約のある環境でAIモデルをデプロイする方法、継続的なパフォーマンスアップデートのためにそのメンテナンス方法、実践者にとって重要な教訓を共有する方法について紹介する。
関連論文リスト
- The SPACE of AI: Real-World Lessons on AI's Impact on Developers [0.807084206814932]
我々は,SPACEフレームワークの次元にまたがるAIの影響,すなわち満足度,パフォーマンス,アクティビティ,コラボレーション,効率を,開発者がどのように認識するかを研究する。
AIは広く採用されており、生産性の向上、特にルーチンタスクに広く見なされている。
開発者の報告によると、効率性と満足度は向上し、コラボレーションへの影響の証拠は少なくなった。
論文 参考訳(メタデータ) (2025-07-31T21:45:54Z) - Towards Effective Human-in-the-Loop Assistive AI Agents [15.11527529177358]
本稿では,AI指導が手続き的タスクのパフォーマンスに与える影響を評価するための評価フレームワークと人間-AIインタラクションのデータセットを紹介する。
また、料理から戦場医療まで、現実世界のタスクにおけるインタラクティブなガイダンスを提供するAR搭載AIエージェントも開発しています。
論文 参考訳(メタデータ) (2025-07-24T12:50:46Z) - Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
我々は、AIの倫理的影響を研究するための努力は、その環境への影響を評価するものと相まって行われるべきであると論じる。
我々は,AI研究と実践にAI倫理と持続可能性を統合するためのベストプラクティスを提案する。
論文 参考訳(メタデータ) (2025-04-01T13:53:11Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Human AI Collaboration in Software Engineering: Lessons Learned from a
Hands On Workshop [1.14603174659129]
この研究は、人間のAIインタラクションの進化する性質、ソフトウェアエンジニアリングタスクにおけるAIの能力、この領域にAIを統合することの課題と制限など、重要なテーマを特定している。
この結果は、AI、特にChatGPTがコード生成と最適化の効率を改善する一方で、特に複雑な問題解決とセキュリティ上の考慮を必要とする分野において、人間の監視は依然として重要であることを示している。
論文 参考訳(メタデータ) (2023-12-17T06:31:05Z) - The Rise of the AI Co-Pilot: Lessons for Design from Aviation and Beyond [22.33734581699234]
我々は、AIが単なるツールではなく、人間の指導の下で働く共同パイロットと見なされるパラダイムを提唱する。
本稿では,AIパートナーシップにおけるアクティブな人間の関与,制御,スキル向上を重視したデザインアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-16T13:58:15Z) - Synergizing Human-AI Agency: A Guide of 23 Heuristics for Service
Co-Creation with LLM-Based Agents [16.560339524456268]
この研究は、に関心のあるサービスプロバイダが、その実践者やより広範なコミュニティに対して、Large Language Models(LLM)技術が統合されるかどうかを判断するための原動力となる。
LLMをベースとしたサービス共同作成ツールであるCoAGentを通じて,非AI専門家とAIの相互学習の旅について検討する。
論文 参考訳(メタデータ) (2023-10-23T16:11:48Z) - Roots and Requirements for Collaborative AIs [0.0]
コラボレーションの夢としてのAIは、人間の知性(IA)を増強するコンピュータツールや、中間的な人間のコラボレーションとは異なる。
AIの政府諮問グループとリーダーは、AIは透明で効果的な協力者であるべきだと長年主張してきた。
AIチームメイトは、ソリューションの一部なのか?人工知能(AI)はどのようにして存在するべきか?
論文 参考訳(メタデータ) (2023-03-21T17:27:38Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
HCAI(Human-Centered AI)は、さまざまなヒューマンタスクをサポートするAI技術の設計と実装を目的とした研究活動である。
データサイエンス(DS)に関する一連の研究プロジェクトを使ってHCAIにどのようにアプローチするかをケーススタディとして紹介する。
論文 参考訳(メタデータ) (2021-10-03T21:47:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。