論文の概要: Physics-Driven Neural Network for Solving Electromagnetic Inverse Scattering Problems
- arxiv url: http://arxiv.org/abs/2507.16321v1
- Date: Tue, 22 Jul 2025 08:04:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.016395
- Title: Physics-Driven Neural Network for Solving Electromagnetic Inverse Scattering Problems
- Title(参考訳): 電磁逆散乱問題の解法のための物理駆動ニューラルネットワーク
- Authors: Yutong Du, Zicheng Liu, Bazargul Matkerim, Changyou Li, Yali Zong, Bo Qi, Jingwei Kou,
- Abstract要約: 物理駆動型ニューラルネットワーク(PDNN)を用いた逆散乱問題(ISP)に対する新しい解法を提案する。
PDNNは、収集された散乱場の入力と予測された解に対応する散乱場の計算のみを訓練する。
提案手法は, 複合損失散乱器を用いた場合であっても, 復元精度が高く, 安定性が高いことを示す。
- 参考スコア(独自算出の注目度): 7.564377962527698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning-based methods have been proposed for solving inverse scattering problems (ISPs), but most of them heavily rely on data and suffer from limited generalization capabilities. In this paper, a new solving scheme is proposed where the solution is iteratively updated following the updating of the physics-driven neural network (PDNN), the hyperparameters of which are optimized by minimizing the loss function which incorporates the constraints from the collected scattered fields and the prior information about scatterers. Unlike data-driven neural network solvers, PDNN is trained only requiring the input of collected scattered fields and the computation of scattered fields corresponding to predicted solutions, thus avoids the generalization problem. Moreover, to accelerate the imaging efficiency, the subregion enclosing the scatterers is identified. Numerical and experimental results demonstrate that the proposed scheme has high reconstruction accuracy and strong stability, even when dealing with composite lossy scatterers.
- Abstract(参考訳): 近年,逆散乱問題(ISP)の解法として深層学習に基づく手法が提案されているが,そのほとんどはデータに依存し,限られた一般化能力に悩まされている。
本稿では,物理駆動型ニューラルネットワーク (PDNN) の更新後に解を反復的に更新する新たな解法を提案する。
データ駆動型ニューラルネットワークソルバとは異なり、PDNNは、収集された散乱場の入力と予測された解に対応する散乱場の計算のみを訓練し、一般化問題を回避している。
さらに、撮像効率を向上するため、散乱体を囲む部分領域を同定する。
数値および実験結果から, 複合損失散乱器を扱う場合であっても, 提案手法は高い復元精度と強い安定性を有することが示された。
関連論文リスト
- Representation and Regression Problems in Neural Networks: Relaxation, Generalization, and Numerics [5.915970073098098]
浅層ニューラルネットワーク(NN)の訓練に伴う3つの非次元最適化問題に対処する。
我々はこれらの問題と表現を凸化し、不在緩和ギャップを証明するために代表者勾配を適用した。
我々はこれらの境界に対する鍵パラメータの影響を分析し、最適な選択を提案する。
高次元データセットに対して,勾配降下と組み合わせて効率的な解を求めるスペーシフィケーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-02T15:40:29Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
中性子拡散方程式は原子炉の解析において重要な役割を果たす。
従来のPINNアプローチでは、完全に接続されたネットワーク(FCN)アーキテクチャを利用することが多い。
R2-PINNは、現在の方法に固有の制限を効果的に克服し、中性子拡散方程式のより正確で堅牢な解を提供する。
論文 参考訳(メタデータ) (2024-06-23T13:49:31Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Solutions to Elliptic and Parabolic Problems via Finite Difference Based Unsupervised Small Linear Convolutional Neural Networks [1.124958340749622]
線形畳み込みニューラルネットワークを用いてPDEの有限差分解を直接推定するために、トレーニングデータを必要としない完全に教師なしのアプローチを提案する。
提案手法は、類似の有限差分に基づくアプローチよりもパラメータを著しく少なくし、また、いくつかの選択された楕円型および放物型問題に対する真の解に匹敵する精度を示す。
論文 参考訳(メタデータ) (2023-11-01T03:15:10Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - A unified scalable framework for causal sweeping strategies for
Physics-Informed Neural Networks (PINNs) and their temporal decompositions [22.514769448363754]
PINNとXPINNの時間依存型PDEのトレーニング課題について論じる。
PINNとXPINNのギャップを埋める新しい積み重ね分解法を提案する。
また,従来のPINNの因果性にインスパイアされた新しいタイムスウィーピング・コロケーション・ポイント・アルゴリズムを定式化した。
論文 参考訳(メタデータ) (2023-02-28T01:19:21Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
物理インフォームドニューラルネットワーク(PINN)アルゴリズムは、偏微分方程式(PDE)を含む幅広い問題を解く上で有望な結果を示している。
彼らはしばしば、スペクトルバイアスと呼ばれる現象のために、ターゲット関数が高周波の特徴を含むとき、望ましい解に収束しない。
本研究は, 運動量による勾配降下下で進化するPINNのトレーニングダイナミクスを, NTK(Neural Tangent kernel)を用いて研究するものである。
論文 参考訳(メタデータ) (2022-06-29T19:03:10Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Physics-guided Loss Functions Improve Deep Learning Performance in
Inverse Scattering [13.529767949868248]
ディープニューラルネットワーク(DNN)技術は、電磁逆散乱問題にうまく応用されている。
トレーニングプロセスにおいて,身体現象が効果的に組み込まれないことを示す。
多重散乱に基づく近接場量を含む損失関数の新しい設計法を提案する。
論文 参考訳(メタデータ) (2021-11-13T16:36:23Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z) - Multivariate Deep Evidential Regression [77.34726150561087]
不確実性を認識するニューラルネットワークによる新しいアプローチは、従来の決定論的手法よりも有望である。
本稿では,レグレッションベースニューラルネットワークからアレータ性およびてんかん性不確かさを抽出する手法を提案する。
論文 参考訳(メタデータ) (2021-04-13T12:20:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。