論文の概要: Neural Ordinary Differential Equations for Learning and Extrapolating System Dynamics Across Bifurcations
- arxiv url: http://arxiv.org/abs/2507.19036v1
- Date: Fri, 25 Jul 2025 07:44:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.868744
- Title: Neural Ordinary Differential Equations for Learning and Extrapolating System Dynamics Across Bifurcations
- Title(参考訳): 分岐にまたがる学習・外挿システムダイナミクスのためのニューラル正規微分方程式
- Authors: Eva van Tegelen, George van Voorn, Ioannis Athanasiadis, Peter van Heijster,
- Abstract要約: システムダイナミクスを学習するための継続的データ駆動型フレームワークを開発した。
ニューラルネットワークの時間的差分方程式は,時系列データから直接,基礎となる分岐構造を復元できることを示す。
また,制約付きノイズの多いデータ条件下での手法の性能評価を行った。
- 参考スコア(独自算出の注目度): 1.4277745078693944
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Forecasting system behaviour near and across bifurcations is crucial for identifying potential shifts in dynamical systems. While machine learning has recently been used to learn critical transitions and bifurcation structures from data, most studies remain limited as they exclusively focus on discrete-time methods and local bifurcations. To address these limitations, we use Neural Ordinary Differential Equations which provide a continuous, data-driven framework for learning system dynamics. We apply our approach to a predator-prey system that features both local and global bifurcations, presenting a challenging test case. Our results show that Neural Ordinary Differential Equations can recover underlying bifurcation structures directly from timeseries data by learning parameter-dependent vector fields. Notably, we demonstrate that Neural Ordinary Differential Equations can forecast bifurcations even beyond the parameter regions represented in the training data. We also assess the method's performance under limited and noisy data conditions, finding that model accuracy depends more on the quality of information that can be inferred from the training data, than on the amount of data available.
- Abstract(参考訳): 分岐付近の予測システムの挙動は、力学系の潜在的な変化を特定するために重要である。
機械学習は近年、データから臨界遷移や分岐構造を学ぶために使われてきたが、ほとんどの研究は離散時間法や局所分岐にのみ焦点を絞っている。
これらの制限に対処するために、システムのダイナミクスを学習するための継続的でデータ駆動のフレームワークを提供するNeural Ordinary Differential Equationsを使用します。
我々は,局所分岐とグローバル分岐の両方を特徴とする捕食者・捕食者システムにアプローチを適用し,挑戦的なテストケースを提示した。
この結果から,パラメータ依存ベクトル場を学習することにより,2次構造を時系列データから直接復元できることが示唆された。
特に、ニューラル正規微分方程式は、トレーニングデータに表されるパラメータ領域を超えても分岐を予測することができることを示す。
また,データ量よりもトレーニングデータから推測できる情報の品質にモデル精度が依存していることから,制約のあるデータ条件下での手法の性能を評価する。
関連論文リスト
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
我々は、訓練中にデータポイントを除去する影響を定量化する、軌跡特異的な離脱の影響の概念を定式化する。
軌道固有LOOの効率的な近似を可能にする新しい手法であるデータ値埋め込みを提案する。
データバリューの埋め込みは、トレーニングデータの順序付けをキャプチャするので、モデルトレーニングのダイナミクスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-12T18:28:55Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Learning invariant representations of time-homogeneous stochastic dynamical systems [27.127773672738535]
我々は,そのダイナミクスを忠実に捉えた状態の表現を学習する問題を研究する。
これは、転送演算子やシステムのジェネレータを学ぶのに役立ちます。
ニューラルネットワークに対する最適化問題として,優れた表現の探索が可能であることを示す。
論文 参考訳(メタデータ) (2023-07-19T11:32:24Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - A Framework for Machine Learning of Model Error in Dynamical Systems [7.384376731453594]
データから動的システムを特定するために,機械的アプローチと機械学習アプローチを混在させる統一フレームワークを提案する。
モデルエラーがメモリレスであり、大きなメモリを持つ問題に対して、連続時間と離散時間の両方で問題を提起した。
ハイブリッド手法は、データ飢餓、モデルの複雑さの要求、全体的な予測性能において、データ駆動アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2021-07-14T12:47:48Z) - Knowledge-Based Learning of Nonlinear Dynamics and Chaos [3.673994921516517]
本稿では,非線形システムから観測結果に基づいて予測モデルを抽出するための普遍的な学習フレームワークを提案する。
我々のフレームワークは、非線形システムを連続時間系として自然にモデル化するため、第一原理知識を容易に組み込むことができる。
論文 参考訳(メタデータ) (2020-10-07T13:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。