論文の概要: Breaking the Precision Ceiling in Physics-Informed Neural Networks: A Hybrid Fourier-Neural Architecture for Ultra-High Accuracy
- arxiv url: http://arxiv.org/abs/2507.20929v1
- Date: Mon, 28 Jul 2025 15:41:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:58.186778
- Title: Breaking the Precision Ceiling in Physics-Informed Neural Networks: A Hybrid Fourier-Neural Architecture for Ultra-High Accuracy
- Title(参考訳): 物理インフォームドニューラルネットワークにおける高精度シーリング:超高精度のハイブリッドフーリエニューラルアーキテクチャ
- Authors: Wei Shan Lee, Chi Kiu Althina Chau, Kei Chon Sio, Kam Ian Leong,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、4階偏微分方程式に対して10-3$-10-4$の誤差で高められている。
我々は従来の数値法よりも17倍のL2誤差を1.94倍10-7$で達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have plateaued at errors of $10^{-3}$-$10^{-4}$ for fourth-order partial differential equations, creating a perceived precision ceiling that limits their adoption in engineering applications. We break through this barrier with a hybrid Fourier-neural architecture for the Euler-Bernoulli beam equation, achieving unprecedented L2 error of $1.94 \times 10^{-7}$-a 17-fold improvement over standard PINNs and \(15-500\times\) better than traditional numerical methods. Our approach synergistically combines a truncated Fourier series capturing dominant modal behavior with a deep neural network providing adaptive residual corrections. A systematic harmonic optimization study revealed a counter-intuitive discovery: exactly 10 harmonics yield optimal performance, with accuracy catastrophically degrading from $10^{-7}$ to $10^{-1}$ beyond this threshold. The two-phase optimization strategy (Adam followed by L-BFGS) and adaptive weight balancing enable stable ultra-precision convergence. GPU-accelerated implementation achieves sub-30-minute training despite fourth-order derivative complexity. By addressing 12 critical gaps in existing approaches-from architectural rigidity to optimization landscapes-this work demonstrates that ultra-precision is achievable through proper design, opening new paradigms for scientific computing where machine learning can match or exceed traditional numerical methods.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、4階偏微分方程式に対して10^{-3}$-$10^{-4}$の誤差で高められ、エンジニアリングへの応用を制限する精度の高い天井が作られた。
この障壁をEuler-Bernoulliビーム方程式のハイブリッドフーリエ-ニューラルアーキテクチャで突破し、従来の数値法よりも17倍改善された1.94 \times 10^{-7}$-a 17倍のL2誤差を達成した。
提案手法は,重み付けされたフーリエ級数と適応的残差補正を行うディープニューラルネットワークを相乗的に組み合わせる。
体系的な調和最適化研究により、正に10の調和が最適性能を示し、その精度は10^{-7}$から10^{-1}$に破滅的に低下した。
2相最適化戦略(AdamとL-BFGS)と適応重みバランスは安定な超精密収束を可能にする。
GPUアクセラレーションの実装は、4階微分複雑性にもかかわらず30分未満のトレーニングを実現する。
アーキテクチャの剛性からランドスケープの最適化に至るまで、既存のアプローチにおける12つの重要なギャップに対処することで、この研究は、超精度が適切な設計によって達成可能であることを実証し、機械学習が従来の数値手法と一致または超える科学計算のための新しいパラダイムを開放する。
関連論文リスト
- PhysicsCorrect: A Training-Free Approach for Stable Neural PDE Simulations [4.7903561901859355]
予測ステップ毎にPDE整合性を強制する,トレーニング不要な修正フレームワークであるNyberCorrectを提案する。
私たちの重要なイノベーションは、オフラインのウォームアップフェーズでJacobianとその擬似逆をプリ計算する効率的なキャッシュ戦略です。
3つの代表的なPDEシステムにおいて、物理コレクトは予測誤差を最大100倍に削減し、無視可能な推論時間を加算する。
論文 参考訳(メタデータ) (2025-07-03T01:22:57Z) - LaPON: A Lagrange's-mean-value-theorem-inspired operator network for solving PDEs and its application on NSE [8.014720523981385]
ラグランジュの平均値定理に着想を得た演算子ネットワークであるLaPONを提案する。
損失関数ではなく、ニューラルネットワークアーキテクチャに直接、事前の知識を組み込む。
LaPONは、高忠実度流体力学シミュレーションのためのスケーラブルで信頼性の高いソリューションを提供する。
論文 参考訳(メタデータ) (2025-05-18T10:45:17Z) - Gradient Alignment in Physics-informed Neural Networks: A Second-Order Optimization Perspective [12.712238596012742]
損失項間の方向性衝突に対処するための理論的および実践的なアプローチを提案する。
これらの矛盾が一階法にどのように制限されているかを示し、二階最適化が自然にそれらを解決することを示す。
我々は,最近提案された準ニュートン法であるSOAPが,ヘッセンのプレコンディショナーを効率的に近似していることを証明する。
論文 参考訳(メタデータ) (2025-02-02T00:21:45Z) - Machine learning-driven conservative-to-primitive conversion in hybrid piecewise polytropic and tabulated equations of state [0.2999888908665658]
本稿では,流体力学シミュレーションにおける保守的・原始的逆転を高速化する機械学習(ML)手法を提案する。
我々は、フィードフォワードニューラルネットワーク(NNC2PSとNC2PL)を採用し、PyTorchでトレーニングし、NVIDIARTを用いたGPU推論に最適化した。
NNC2PS推論用の混合精度RTエンジンは、データセットサイズ1000,000点の従来のシングルスレッド実装よりも約400倍高速である。
論文 参考訳(メタデータ) (2024-12-10T19:00:01Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
我々は、ニューラル演算子学習が本質的に近似誤差を誘導する直感の上に構築する。
提案手法では,GPUメモリ使用量を最大50%削減し,スループットを58%向上する。
論文 参考訳(メタデータ) (2023-07-27T17:42:06Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
我々は,ニューラルネットワークの初期状態を評価するための理論的知見を備えた,GradCosineという微分可能な量を提案する。
標準制約下でGradCosineを最大化することにより、ネットワークのトレーニングとテストの両方の性能を向上させることができることを示す。
サンプル分析から実際のバッチ設定に一般化されたNIOは、無視可能なコストで、より優れた初期化を自動で探すことができる。
論文 参考訳(メタデータ) (2022-10-12T06:49:16Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
フーリエ周波数領域における符号関数の勾配を正弦関数の組み合わせを用いて推定し,BNNの訓練を行う。
いくつかのベンチマークデータセットとニューラルネットワークの実験により、この手法で学習したバイナリネットワークが最先端の精度を達成することが示されている。
論文 参考訳(メタデータ) (2021-03-01T08:25:26Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z) - Hessian-based optimization of constrained quantum control [0.0]
勾配に基づくテキストスクリプアルゴリズムは、量子物理学の幅広い分野にうまく適用されている。
我々はコヒーレント力学の厳密な2mathrmnd$次解析微分を導出し実装する。
本稿では,制約付きユニタリゲート合成における最適かつ平均的な誤りに対して,回路テクスチャシステム上での性能改善を示す。
論文 参考訳(メタデータ) (2020-06-01T13:31:06Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。