論文の概要: Equivariant U-Shaped Neural Operators for the Cahn-Hilliard Phase-Field Model
- arxiv url: http://arxiv.org/abs/2509.01293v3
- Date: Tue, 09 Sep 2025 11:22:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 12:33:22.784846
- Title: Equivariant U-Shaped Neural Operators for the Cahn-Hilliard Phase-Field Model
- Title(参考訳): Cahn-Hilliard相場モデルに対する同変U字型ニューラル演算子
- Authors: Xiao Xue, Marco F. P. ten Eikelder, Tianyue Yang, Yiqing Li, Kan He, Shuo Wang, Peter V. Coveney,
- Abstract要約: 等価なU字型ニューラル作用素(E-UNO)が過去の力学の短い歴史から位相場変数の進化を学習できることを示す。
対称性とスケール階層を符号化することにより、モデルはより一般化され、トレーニングデータが少なくなり、物理的に一貫したダイナミクスが得られる。
- 参考スコア(独自算出の注目度): 4.79907962230318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phase separation in binary mixtures, governed by the Cahn-Hilliard equation, plays a central role in interfacial dynamics across materials science and soft matter. While numerical solvers are accurate, they are often computationally expensive and lack flexibility across varying initial conditions and geometries. Neural operators provide a data-driven alternative by learning solution operators between function spaces, but current architectures often fail to capture multiscale behavior and neglect underlying physical symmetries. Here we show that an equivariant U-shaped neural operator (E-UNO) can learn the evolution of the phase-field variable from short histories of past dynamics, achieving accurate predictions across space and time. The model combines global spectral convolution with a multi-resolution U-shaped architecture and regulates translation equivariance to align with the underlying physics. E-UNO outperforms standard Fourier neural operator and U-shaped neural operator baselines, particularly on fine-scale and high-frequency structures. By encoding symmetry and scale hierarchy, the model generalizes better, requires less training data, and yields physically consistent dynamics. This establishes E-UNO as an efficient surrogate for complex phase-field systems.
- Abstract(参考訳): Cahn-Hilliard方程式によって支配される二成分混合物の相分離は、材料科学と軟質物質の界面力学において中心的な役割を果たす。
数値解法は正確であるが、計算コストが高く、初期条件や測地条件によって柔軟性に欠けることが多い。
ニューラルネットワークは、関数空間間の解演算子を学習することで、データ駆動の代替手段を提供するが、現在のアーキテクチャはしばしば、マルチスケールの振る舞いを捉えず、基礎となる物理対称性を無視する。
ここでは、同変U字型ニューラル作用素(E-UNO)が、過去の力学の短い歴史から位相場変数の進化を学習し、空間と時間にわたって正確な予測をすることができることを示す。
このモデルは、大域的なスペクトルの畳み込みと多解像度のU字型アーキテクチャを結合し、基礎となる物理と一致するように翻訳平衡を規制する。
E-UNOは、特に微細構造と高周波構造において、標準的なフーリエニューラル演算子とU字ニューラル演算子ベースラインを上回っている。
対称性とスケール階層を符号化することにより、モデルはより一般化され、トレーニングデータが少なくなり、物理的に一貫したダイナミクスが得られる。
これにより、E-UNOは複雑な位相場系の効率的なサロゲートとして確立される。
関連論文リスト
- PMNO: A novel physics guided multi-step neural operator predictor for partial differential equations [23.04840527974364]
本稿では,複雑な物理系の長期予測における課題に対処する物理誘導多段階ニューラル演算子(PMNO)アーキテクチャを提案する。
PMNOフレームワークは、シングルステップ入力をフォワードパス内の複数ステップの履歴データに置き換え、バックプロパゲーション中に暗黙のタイムステッピングスキームを導入する。
様々な物理系におけるPMNO予測器の優れた予測性能を示す。
論文 参考訳(メタデータ) (2025-06-02T12:33:50Z) - Learning High-dimensional Ionic Model Dynamics Using Fourier Neural Operators [0.0]
フーリエニューラル演算子が高次元のイオン系における状態変数の進化を学習できるかどうかを検討する。
本手法の有効性は,次元が増大する3つのよく確立されたイオンモデルの力学を正確に学習することによって実証する。
制約のあるアーキテクチャも制約のないアーキテクチャも、考慮されたすべてのモデルにまたがる精度で同等の結果を得る。
論文 参考訳(メタデータ) (2025-05-20T07:37:03Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
本稿では,グラフ力学ネットワーク(GMN)を提案する。
GMNは、一般化された座標により、構造体の前方運動学情報(位置と速度)を表す。
大規模な実験は、予測精度、制約満足度、データ効率の観点から、最先端のGNNと比較してGMNの利点を支持する。
論文 参考訳(メタデータ) (2022-03-12T14:22:14Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Neural Stochastic Partial Differential Equations [1.2183405753834562]
物理に着想を得たニューラルアーキテクチャの2つの重要なクラスの拡張を提供するニューラルSPDEモデルを導入する。
一方、一般的な神経-通常、制御され、粗い-微分方程式モデルをすべて拡張し、入ってくる情報を処理することができる。
一方、関数空間間のマッピングをモデル化するニューラルネットワークの最近の一般化であるNeural Operatorsを拡張して、複雑なSPDEソリューション演算子を学習することができる。
論文 参考訳(メタデータ) (2021-10-19T20:35:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。