論文の概要: Accelerating PDE Solvers with Equation-Recast Neural Operator Preconditioning
- arxiv url: http://arxiv.org/abs/2509.01416v1
- Date: Mon, 01 Sep 2025 12:14:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.683766
- Title: Accelerating PDE Solvers with Equation-Recast Neural Operator Preconditioning
- Title(参考訳): 方程式リキャスト型ニューラル演算子プレコンディショニングによるPDE解の高速化
- Authors: Qiyun Cheng, Md Hossain Sahadath, Huihua Yang, Shaowu Pan, Wei Ji,
- Abstract要約: Minimal-Data Parametric Neural Operator Preconditioning (MD-PNOP) はパラメトリックPDEソルバを高速化するための新しいパラダイムである。
パラメータ偏差の残差を、トレーニングされたニューラル演算子を使用して、オフラインでソリューションを洗練させる、追加のソース用語として再キャストする。
固定ソース、単一グループ固有値、および多群結合固有値問題に対する完全順序忠実度を維持しつつ、計算時間の50%削減を一貫して達成する。
- 参考スコア(独自算出の注目度): 9.178290601589365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The computational overhead of traditional numerical solvers for partial differential equations (PDEs) remains a critical bottleneck for large-scale parametric studies and design optimization. We introduce a Minimal-Data Parametric Neural Operator Preconditioning (MD-PNOP) framework, which establishes a new paradigm for accelerating parametric PDE solvers while strictly preserving physical constraints. The key idea is to recast the residual from parameter deviation as additional source term, where any trained neural operator can be used to refine the solution in an offline fashion. This directly addresses the fundamental extrapolation limitation of neural operators, enabling extrapolative generalization of any neural operator trained at a single parameter setting across a wide range of configurations without any retraining. The neural operator predictions are then embedded into iterative PDE solvers as improved initial guesses, thereby reducing convergence iterations without sacrificing accuracy. Unlike purely data-driven approaches, MD-PNOP guarantees that the governing equations remain fully enforced, eliminating concerns about loss of physics or interpretability. The framework is architecture-agnostic and is demonstrated using both Deep Operator Networks (DeepONet) and Fourier Neural Operators (FNO) for Boltzmann transport equation solvers in neutron transport applications. We demonstrated that neural operators trained on a single set of constant parameters successfully accelerate solutions with heterogeneous, sinusoidal, and discontinuous parameter distributions. Besides, MD-PNOP consistently achieves ~50% reduction in computational time while maintaining full order fidelity for fixed-source, single-group eigenvalue, and multigroup coupled eigenvalue problems.
- Abstract(参考訳): 偏微分方程式(PDE)に対する従来の数値解法の計算オーバーヘッドは、大規模パラメトリック研究や設計最適化において重要なボトルネックとなっている。
物理制約を厳格に保ちながらパラメトリックPDEソルバを高速化するための新しいパラダイムを確立する,MD-PNOP(Minimmal-Data Parametric Neural Operator Preconditioning)フレームワークを導入する。
鍵となるアイデアは、パラメータ偏差からの残差を追加のソース用語として再キャストすることであり、トレーニングされたニューラル演算子を使用して、オフラインでソリューションを洗練することができる。
これは、ニューラル演算子の基本的な外挿制限に直接対処し、リトレーニングなしで幅広い構成で訓練された単一パラメータ設定で訓練されたニューラル演算子の外挿一般化を可能にする。
ニューラル演算子の予測は、初期推定を改善するために反復的なPDEソルバに埋め込まれ、精度を犠牲にすることなく収束反復を低減する。
純粋にデータ駆動のアプローチとは異なり、MD-PNOPは、支配方程式が完全に強制されることを保証し、物理学の損失や解釈可能性に関する懸念を取り除く。
このフレームワークはアーキテクチャに依存しず、中性子輸送応用におけるボルツマン輸送方程式の解法としてディープ・オペレーター・ネットワーク(DeepONet)とフーリエ・ニューラル・オペレーター(FNO)の両方を用いて実証されている。
我々は,一組の定数パラメータで訓練したニューラル演算子が,不均一,正弦波,不連続パラメータ分布による解の高速化に成功したことを実証した。
さらに、MD-PNOPは、固定ソース、単一グループ固有値、および多重グループ結合固有値問題に対する完全順序忠実度を維持しながら、計算時間の約50%の削減を一貫して達成する。
関連論文リスト
- DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - Spectral-Refiner: Accurate Fine-Tuning of Spatiotemporal Fourier Neural Operator for Turbulent Flows [6.961408873053586]
最近の演算子型ニューラルネットワークは、部分微分方程式(PDE)の近似に有望な結果を示している。
これらのニューラルネットワークは、かなりのトレーニング費用を要し、科学や工学の分野において要求される精度を常に達成するとは限らない。
論文 参考訳(メタデータ) (2024-05-27T14:33:06Z) - Neural Parameter Regression for Explicit Representations of PDE Solution Operators [22.355460388065964]
偏微分方程式(PDE)の解演算子を学習するための新しいフレームワークであるニューラル回帰(NPR)を導入する。
NPRは、ニューラルネットワーク(NN)パラメータを回帰するために、Physics-Informed Neural Network (PINN, Raissi et al., 2021) 技術を使用している。
このフレームワークは、新しい初期条件と境界条件に顕著な適応性を示し、高速な微調整と推論を可能にした。
論文 参考訳(メタデータ) (2024-03-19T14:30:56Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
本稿では,メモリ要求を低減し,より一般化したデータ効率・並列化可能な演算子学習手法を提案する。
MG-TFNOは、実世界の実世界の現象の局所的構造と大域的構造を活用することで、大規模な分解能にスケールする。
乱流ナビエ・ストークス方程式において150倍以上の圧縮で誤差の半分以下を達成できる優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-29T20:18:52Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Residual-based error correction for neural operator accelerated
infinite-dimensional Bayesian inverse problems [3.2548794659022393]
関数空間間の非線形写像のニューラルネットワーク表現を用いて無限次元ベイズ逆問題を高速化する。
誤差補正の訓練されたニューラル演算子が近似誤差を2次的に低減できることを示す。
トレーニングされたニューラル演算子を用いて生成された2つのBIPの後方表現は、誤り訂正によって大きく、一貫して拡張されていることを示す。
論文 参考訳(メタデータ) (2022-10-06T15:57:22Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。